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PREFACE

This report combines the semiannual technical reports for the periods June 11, 1983
through December 10, 1983 and December 11, 1983 through June 10, 1984.
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1. INTRODUCTION

The goal of this research program is to obtain solutions to fundamental problems in
computer vision, particularly to such problems as stereo compilation, feature extraction,
linear delineation, and general scene modeling that are relevant to the development of an
automated capability for interpreting aerial imagery and the production of cartographic
products.

To achieve this goal, we are engaged in investigations of such basic issues as image
matching, partitioning, representation, and physical modeling (shape from shading, texture,
and optic flow; material identification; recovery of imaging and illumination parameters such
as “vanishing points,” “camera parameters,” illumination source location; edge classification;
etc.). However, it is obvious that high-level, high-performance vision requires the use
of both intelligence and stored knowledge (to provide an integrative framework), as well
as an understanding of the physics and mathematics of the imaging process (to provide
the basic information needed for a reasoned interpretation of the sensed data). Thus, a
significant portion of our work is devoted to developing new approaches to the problem
of “knowledge-based vision.” Finally, vision research cannot proceed without a means
for effective implementation, demonstration, and experimental verification of theoretical
concepts; we have developed an environment in which some of the newest and most effective
computing instruments can be employed for these purposes.

2. KNOWLEDGE BASED VISION: the Construction of an
Expert System Control Structure for Stereo Compilation and
Feature Extraction.

Our intent in this effort is to develop a system framework for allowing higher level
knowledge to guide and integrate the detailed interpretation of imaged data by autonomous
scene analysis techniques. Such an approach allows symbolic knowledge, provided by higher-
level knowledge sources, to automatically control the selection of appropriate algorithms,
adjust their parameters, and apply them in the relevant portions of the image. More
significantly, we are attempting to provide an efficient means for supplying and using
qualitative knowledge about the semantic and physical structure of a scene so that the
machine-produced interpretation, constrained by this knowledge, will be consistent with
what is generally true of the overall scene structure, rather than just a good fii to locally
applied models.

An important component of our approach is to design a means for a human operator to
simply and effectively provide the machine with a qualitative scene description, in the form
of a semantically labeled 3-D “sketch.” This capability for eflective communication between
a human and the machine about the three-dimensional world requires both appropriate
graphics tools and an ability on the part of the machine for both spatial reasoning and
some semantic “understanding.” The importance of this work derives from the fact that a
major difficulty in automating the image-interpretation process is the inability of current
computer systems to deduce, from the visible image content, the general context of the scene
(e.g., urban or rural; season of the year; what happened immediately before, and what will

1




- e

bappen immediately after, the image was viewed by the sensor) - the knowledge base and
reasoning required for such an ability is well beyond what the state of our art can hope to
accomplish over (at least) the next 5 years. Thus, our work is intended to provide an interim
means by which a human can supply, a task-oriented program, the high level overview it
needs for its analysis, but cannot acquire by itself.

Two of our major integrative efforts are directly concerned with the knowledge-based
vision problem:

One effort, integrating our work in stereo compilation and physical modeling, is the
construction of a rule-based system with a library of processes and activities, which can
be invoked to carry out specific goals in the domain of cartographic analysis and stereo
reconstruction. This work is based on results described below, but the integrative framework
is still being developed and will not be described in this report.

The second effort, described in a following section on feature extraction, is a restricted
version of the concept discussed above (it employes contextual and semantic knowledge, but
does not address the issues of qualitative reasoning nor 3-D spatial understanding).

3. DEVELOPMENT OF METHODS FOR MODELING AND
USING PHYSICAL CONSTRAINTS IN IMAGE
INTERPRETATION.

Our goal in this work is to develop methods that will first allow us to produce a sketch
of the physical nature of a scene and the illumination and imaging conditions, and then
permit. us to use this physical sketch to guide and constrain the more detailed descriptive
processes — such as precise stereo mapping.

Our approach is to develop:

o models of the relationship between physical objects in the scene and the intensity patterns
they produce in an image (e.g., models that allow us to classify intensity edges in an image
as either shadow, or occlusion, or surface intersection, or material boundaries in the scene),
¢ models of the geometric constraints induced by the projective imaging process (e.g., models
that allow us to determine the location and orientation of the camera that acquired the
image, location of the vanishing points induced by the interaction between scene and camera,
location of a ground plane, etc.), and

o models of the illumination and intensity transformations caused by the atmosphere, light
reflecting from scene surfaces, and the film and digitization processes that result in the
computer representation of the image.

These models, when instantiated for a given scene, provide us with the desired
“physical” sketch. We are assembling a “constraint-based stereo system” that can use this
physical sketch to resolve the ambiguities that defeat conventional approaches to stereo
modeling of scenes (e.g., urban scenes or scenes of cultural sites) for which the images are
widely separated in either space or time, or for which there are large featureless areas, or a
significant number of occlusions.

A summary of some of our current work in the area of modeling and using physical
constraints is presented below.

2
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Rectilinear Forms. Images of cultural scenes, such as building complexes, typically con-
tain a significant amount of linear structure. We have developed an effective computational
technique for recovering 3-D interpretations from a single 2-D image in many such cases. It
works by finding a basis for a vector space suitable for quantifying spatial relations, while
satisfying constraints imposed by linear features in the image. Given three image lines that
are assumed to be perspective projections of mutually orthogonal scene features, the method
backprojects the lines into three-dimensional scene space, generating (potentially) all pos-
sible combinations of line orientations. It selects the combination that is “most orthogonal”
by maximizing the triple product of three unit basis vectors, using the method of steepest
descent. In general, two solutions are found, and the correct one can be chosen by relating
the solutions to knowledge of the vertical direction. A more complete description of this
work is presented in Barnard [1984a] (Appendix A).

Inductive Approach. The technique discussed above has led us to investigate a new class
of computational methods for the interpretation of single images. These methods constitute
an inductive approach because they explicitly recognize that the available data (the image)
are insufficient to make a well-founded logical interpretation; that is, many interpretations
are possible, but only one is preferred. Specific prior models cannot account for the general
power of such perception in the case of a human observer (although prior models are certainly
used when available). To be truly general purpose, machine vision must be able to mimic this
amazing human ability. The inductive approach selects interpretations that are “simplest”
in some sense. While it does not preclude the use of specific prior models, it emphasizes
the use of abstract generic models, such as parametric curves and surfaces. One measure of
simplicity we have considered is based on information-theoretic considerations. This work
will be described in a report by Barnard [1984b).

Optic Flow. In the optic flow paradigm, a moving observer is normally able to interpret a
time sequence of images as an implicit description of a static scene. In principle, the images
can be matched point-by-point and the motion of the observer can be deduced by exploiting
the constraint that the scene is fixed. In practice, this is exceedingly difficult to achieve,
both because point features are rare and because the methods are very sensitive to small
matching errors.

We have developed an alternative optic-flow method that exploits the often available
information about the rotation of the observer. Knowing the observer's rotation greatly
simplifies the problem of matching successive images, but, since all the useful information
that can be derived from the sequence is due to the translation of the observer, it does ot
significantly sacrifice generality. The major advantage to translation-only optic flow is that
curvilinear image features can be matched by exploiting a constraint that is essentially the
same as the epipolar constraint in stereo interpretation. This work is still in progress.

Spatial Reasoning from Line Drawings of Polyhedra. Construction of a three-
dimensional “sketch” is one task faced by the user of an interactive image understanding
expert system. An urban scene typically contains buildings and other objects that can be
modeled as planer-faced polyhedra. An effective way for the user to create 3-D sketches
from multiple views of such objects has been devised.

The system requires two or more line drawings of a polyhedral scene from arbitrary

3
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vantage points. These line drawings may be obtained from a freehand sketch, by tracing the
edges in several photos, or from the output of an automatic edge detector. A “wireframe”
model of the objects is obtained by back-projecting the line drawings. Labels of solid or
vacant space are then assigned to all spatial regions defined by the wireframe using an
iterative constraint propagation algorithm. The result is a data structure that captures the
volumetiic structure of the objects depicted, which can then be used to support hidden-line
elimination and other volumetric operations upon the object. This work is described in
Strat [1984a] (Appendix B).

Determining The Imaging Geometry from a Camera Transformation Matrix.
Many scene analysis algorithms require knowledge of the geometry of the image formation
process as a prerequisite to their application. When the imaging situation can be controlled
or measured directly, the needed parameters can be determined; however, in the case of
uncalibrated images, or photographs whose history is unknown, the necessary parameters
are not available. In these cases, an alternate method of inferring the imaging situation
from the correspondence between a small set of image and object points is required.

One approach has been to compute the imaging geometry directly from the constraints
provided by the known data points. Partial information such as the camera’s focal length
or the location of the piercing point in the image can be used to reduce the number of
data points needed. A second approach consists of two steps. First, the known data points
are used to compute a 4x4 homogeneous coordinate transformation matrix that captures
the entire transformation from object point to image point. An established technique for
this computation involves the least squares solution of a set of simultaneous linear equations
from six or more known correspondences. The goal of the second step is to derive the various
parameters of the image formation process from the transformation matrix. This problem
can be posed as a system of nonlinear equations whose solution had required iterative
methods. Recently, Ganapathy [1984] published the first noniterative solution.

Research performed at SRI has also produced a noniterative solution (Strat [1984b)]
[Appendix C]). By reasoning about the geometric constraints inherent in a camera transfor-
mmation matrix, a simple, easily understood method of determining the various parameters
is obtained. Thiough a series of geometric constructions, the camera’s location and orien-
tation, along with the piercing point and the relations between the focal length and scale
factors, can be determined. The method relies purely on spatial reasoning about geometric
constraints and does not involve an intuitively opaque matrix decomposition. Furthermore,
its semsitivity to errors can be studied geometrically, allowing a clear understanding of the
conditions that lead to inaccurate decompositions. The technique has been successfully
applied to both synthetic imaging situations and real photographs.

4. STEREO COMPILATION: IMAGE MATCHING AND
INTERPOLATION

We are implementing a state-of-the-art stereo system that produces dense range images
given pairs of intensity images. We plan to use it both as a framework for our stereo research,
and as the base component of an expert system concerned with 3-D compilation.
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There are five components of this stereo system: a rectifier, a sparse matcher, a dense
matcher, an interpolater, and a projective display module. The rectifier accepts estimates
of the parameters and distortions associated with the imaging process, the photographic
process, and the digitization. These parameters are used to map digitized image coordinates
onto an ideal image plane. The sparse matcher performs two-dimensional searches to find
several matching points in the two images, which it uses to compute a relative camera model.
The dense matcher tries to match as many points as possible in the two images. It uses the
relative camera model to constrain the searches to one dimension, along epipolar lines. The
interpolater computes a grid of range values by interpolating between the matches found
by either the sparse or the dense matcher. The projective display module allows interactive
examination of the computed 3-D model by generating 2-D projective views of the model
from arbitrarily selected locations in space.

The current system, which runs on the VAX/11-780 in C, is described in Hannah [1984]
(Appendix D). At present, the system produces relatively sparse 3-D information, even in its
dense matching mode. Often 3-D data are required that are more closely spaced than can
be provided by the stereo matching process. Further, there may be areas of the images that
cannot be matched due to noise, insufficient information, and occlusions; this will produce
holes in the dense matched data that must be filled in. In either case, interpolation is
necessary to provide 3-D data between matched points.

Interpolation. We are currently exploring two different schemes for interpolation. One
is a global approach, in which all of the 3-D information available is used to find the
interpolated value for a given point. (This approach is described in Smith [1984] [Appendix
E].) The second approach is a local one, which only uses the data in the neighborhood
of the point to be interpolated. The global approach produces a functional description
that can be differentiated analytically to determine slope and other surface attributes; the
local approach is most useful in the context of verifying the plausibility of the matches by
comparing the data from the stereo images after projection onto this surface. The local
approach is being used in the context of a hierarchical matching scheme described below.

Matching. In a parallel research effort employing our Lisp Machines, we are exploring a
hierarchical technique for developing a regular, dense grid of matched points. This technique
does appropriate warping of the images between each level of the hierarchy, to account for
differences in perspective between the two images as predicted by the model. As a part of
this effort. local interpolation techniques have been developed to fill in holes in the model
before proceeding from level to level.

The Lisp Machine implementation includes a sophisticated terrain display package,
which permits the user to interactively designate a flight path through the 3-dimensional
model derived from a pair of images; the system then creates a “movie” (a sequence of either
monocular or stereo views) of the terrain as the user “flies” along the path above the terrain.
This package is useful not only for assessing the quality of the derived model, but also for
tasks in which a prediction of the appearance of the scene from arbitrarily specified points
of view is desired, as when an observer is moving through mapped terrain. This work is
described in Quam [1984] (Appendix F).

5

Lot L vl

'

v L .'-'-'i
o




Evaluation. We now have available, on our VAX (Testbed) and Lisp Machines, some of
the most advanced stereo matching systems developed by the IU community. As a part of
our stereo research effort, we plan to run several calibrated data sets through these systems
to determine the relative strengths and weaknesses of the various methods, including area
correlation, hierarchical warped matching, edge matching, and edge/intensity matching.

5. THE REPRESENTATION OF NATURAL SCENES

Our current research in this area addresses two related problems: (1) representing
natural shapes such as mountains, vegetation, and clouds, and (2) computing such descrip-
tions from image data. The first step towards solving these problems is to obtain a model
of natural surface shapes.

A model of natural surfaces is extremely important because we face problems that
seem impossible to address with standard descriptive computer vision techniques. How, for
instance, should we describe the shape of leaves on a tree? Or grass? Or clouds! When
we attempt to describe such common, natural shapes using standard representations, the
result is an unrealistically complicated model of something that, viewed introspectively,
seems very simple. Furthermore, how can we extract 3-D information from the image of
a textured surface when we have no models that describe natural surfaces and how they
evidence themselves in the image? The lack of such a 3-D model has restricted image texture
descriptions to being ad hoc statistical measures of the image intensity surface.

Fractal functions, a novel class of naturally arising functions, are a good choice for
modeling natural surfaces, because many basic physical processes (e.g., erosion and aggrega-
tion) produce a fractal surface shape and because fractals are widely used as a graphics tool
for generating natural-looking shapes. Additionally, in a survey of natural imagery, we
found that a fractal model of imaged 3-D surfaces furnishes an accurate description of both
textured and shaded image regions, thus providing validation of this physics-derived model
for both image texture and shading.

Progress relevant to computing 3-D information from imaged data has been achieved
by use of the fractal model. A test has been derived to determine whether or not the fractal
model is valid for a particular set of image data, an empirical method for computing surface
roughness from image data has been developed, and substantial progress has been made
in the areas of shape-from-texture and texture segmentation. Characterization of image
texture by means of a fractal surface model has also shed considerable light on the physical
basis for several of the texture-partitioning techniques currently in use and made it possible
to describe image texture in a manner that is stable over transformations of scale and linear
transforms of intensity.

The computation of a 3-D fractal-based representation from actual image data has
been demonstrated. This work has shown the potential of a fractal-based representation
for efficiently computing good 3-D representations for a variety of natural shapes, including
such seemingly difficult cases as mountains, vegetation, and clouds.

This research is expected to contribute to the development of (1) a computational theory
of vision applicable to natural surface shapes, (2) compact representations of shape useful
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for natural surfaces, and (3) real-time regeneration and display of natural scenes. We also
anticipate adding significantly to our understanding of the way humans perceive natural
scenes.

Details of this work can be found in Pentland [1983 and 1984) (1984, Appendix G).

6. FEATURE EXTRACTION: SCENE PARTITIONING, AND
LABELING

Our efforts in image partitioning and labeling have advanced along two fronts: we
have developed a goal-directed texture-based segmentation algorithm and have studied
knowledge-based control concepts required to integrate this with other image feature-
extraction techniques.

The SLICE goal-directed segmentation system combines knowledge of target textures or
signatures with knowledge of background textures by using histogram-similarity transforms.
Regions of high similarity to a target texture and of low similarity to any negative texture ex-
amples are found. This use of semantic knowledge during the segmentation process improves
segmenter performance and focuses segmentation activity on material types of greatest in-
terest. (The system can also be used for goal-independent texture segmentation by omitting
the similarity-transform computations.) Development of this segmentation technique is es-
sentially complete; all that remains is to integrate it into the more general feature-extraction
system described below. Performance of the SLICE segmentation algorithm is documented
in Laws [1984] (Appendix H).

The KNIFE (knowledge-based interactive feature-extraction) system is intended to solve
problems in image segmentation, feature extraction, material identification, and feature
classification. (image segmentation and feature extraction partition an image into mean-
ingful units; material identification and feature classification label those units.) Experience
has shown that these tasks cannot be carried out adequately in isolation. Image segmenta-
tion, for instance, cannot produce a meaningful partitioning unless it is guided by semantic
criteria from material identification and feature classification.

The KNIFE feature-extraction system will combine a data base of recognition rules
(using shape, texture, and context) with recursive segmentation and other techniques to find
and label scene features. Initially selected image regions, based on image brightness and
texture, are resegmented and refined to locate recognizable objects (e.g., roads, fields, and
buildings). The control process assigns initial labels for each region, and then recursively
analyzes those regions that might contain useful substructure. The choice of regions to
split or merge is influenced by analysis goals rather than solely by statistical properties of
the image data. The segmentation and interpretation will thus proceed at unequal rates
or to different depths in separate scene regions, with differing types of knowledge applied
at successive stages in the analysis. Objects detected by other means (user interaction or
direct object recognition) may override the normal interpretation cycle.

We are concentrating our development efforts on goal-directed recursive segmentation
and on related display, query, and editing tools. Among these tools are display of input
images and segmentation maps; readout of region descriptions and relationships; and com-
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mands for interactively designating, splitting, merging, and classifying regions.

The control process is a production system that looks for applicable rules in the rule N
base. Such rules will be placed on a prioritized queue of tasks to be performed. When ———]
executed, they may query the user, invoke image analysis subsystems, or affect the behavior UEI I
of the control process itself. L

Besides the rule base aad the input or derived imagery, the system will have two
- principal data structures. These are the sketch data base, and the prototype data base.

. The sketch data base serves as the system blackboard, storing all the information
_ relevast to the currest image. The prototype data base will be a semantic network with
nodes storing object propertiss aad poinsters to image examples.

The system s being developed on the VAX-based SRI Image Understanding (IU)
Testbed. The basis for the system’s data analysis capabilities will be the body of software
currently accumulated ia the testbed and other programs now being developed, such as the
SLICE goal-directed segmentation system discussed above.
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7. LINEAR DELINEATION AND PARTITIONING

A basic problem in machine-vision research is how to produce a line sketch that L. ,..._,.,._,,.,1
adequately captures the semantic information present in an image. (For example, maps e
are stylized line sketches that depict restricted types of scene information.) Before we can
hope to attack the problem of semantic interpretation, we must solve some open problems
concerned with direct perception of line-like structure in an image, and with decomposing el
complex networks of line-like structures into their primitive (coherent) components. Both .
of these problems have important practical as well as theoretical implications. :

For example, the roads, rivers, and rail-lines in aerial images have a line-like appearance.
Methods for detecting such structures must be general enough to deal with the wide variety
of shapes they can assume in an image as they traverse natural terrain.

Most approaches to object recognition depend on using the information encoded in the
geometric shape of the contours of the objects. When. objects occlude or touch one another,
decomposition of the merged contours is a critical step in interpretation.

We have made significant progress in both the delineation and the partitioning prob-
lems. Our work in delineation (Fischler and Wolf [1983]) is based on the discovery of a new
perceptual primitive that is highly effective in locating line-like (as opposed to edge-like)
structure.

One approach to decomposing linear structures into coherent components (Fischler and
Bolles {1983]) is based on the concept that perception is an explanatory process - acceptable
precepts must be associated with explanations that are believable: They must be complete
(i.e., they explain all the data), simple (i.e., both concise and of limited complexity), and
stable (i.e., they must not change under small perturbations of either the imaging conditions
or the decision algorithm parameters).

A second approach to the partitioning problem, which also addresses the problem of
qualitative matching of linear structures (Smith and Wolf [1984] [Appendix [}), focuses on the
concept of simplicity as the basis for making perceptual decisions. Given a set of primitives
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as the basis for description, each possible description of a set of data is evaluated as to
how accurately it describes the data and how “long” a description is required (a natural
conversion from accuracy to descriptive length is provided). The shortest description is
chosen as being correct.

These new delineation and partitioning algorithms have produced excellent results in
experimental tests on real data. Our continuing work in this area focuses on theoretical, as
well as performance, issues.

8. COMPUTING ENVIRONMENT FOR IU RESEARCH

Previous reports (e.g., Hanson and Fischler [1981]) describe the VAX 11/780 testbed
environment we created for evaluation, demonstration, and transfer of IU technology. A
significant recent addition to this system is based on the Symbolics 3600 LISP machine.
Documentation of this new system is still incomplete, but as noted in section four of this
report (Stereo Compilation: matching), applications recently considered beyond the state-of-
the-art on comparably priced hardware, have already been programmed and demonstrated
(Quam [1984]).

Acknowledgement

The following researchers have contributed to the work described in this report: H.
Baker, S. Barnard, R.C. Bolles, M.A. Fischler, M.J. Hannah, A.J. Hanson, D.L. Kashtan,
K. Laws, O. Firschein, A.P. Pentland, L.H. Quam, G.B. Smith, T. Strat, and H.C. Wolf.

References

S.T. Barnard, Choosing a Basis for Perceptual Space, Proe. IEEE Workshop on Computer
Vision: Representation and Control, Annapolis, Maryland, (April 1984) (to appear in
Computer Vision, Graphics, and Image Processing). Also Appendix A of this report.

S.T. Barnard, “An Inductive Approach to Figural Perception,” Technical Note (in prepara-
tion). Artificial Intelligence Center, SRI International, Menlo Park, California (1984).

M.A. Fischler and H.C. Wolf, “Machine Perception of Linear Structure,” Proc. 8h Int. Jnt.
Conf. on Artificial Intelligence, Karlsruhe, West Germany, pp. 1010-1013 (8-12 August
1983).

M.A. Fischler and R.C. Bolles, “Perceptual Organization and the Curve Partitioning
Problem,” Proc. 8th Int. Jnt. Conf. on Artificial Intelligence, Karlsruhe, West Germany,
pp. 1014-1018 (8-12 August 1983).

S. Ganapathy, “Decomposition of Transformation Matrices for Robot Vision,” IEEE, pp.
130-139 (1984).

M.J. Hannah, “Description of SRI’s Baseline Stereo System,” Technical Note (in prepara-
tion), Artificial Intelligence Center, SRI International, Menlo Park, California (1984). Also

9

...........

................
.......................

R R R T S

o beis et teint ettt e b i ettt




(AR
A

At

Appendix D of this report.

A.J. Hanson and M.A. Fischler, “The DARPA/DMA Image Understanding Testbed” Proc.
DARPA Image Understanding Workshop, Palo Alto, California, (15-16 September 1982).

K.I. Laws, Goal-Directed Teztured-Image Segmentation, Technical Note 334, Artificial
Intelligence Center, SRI International, Menlo Park, California (September 1984). Also
Appendix H of this report.

A.P. Pentland, “Fractal-Based Description,” Proc. 8h Int. Jnt. Conf. on Artificial B
Intelligence, Karlsruhe, West Germany, pp. 973-981 (8-12 August 1983). o }
A.P. Pentland, “Shading Into Texture,” Proc. Nat. Conf. on Artificial Intelligence, ":-;_"_::_7.‘- :’.’“'
Austin, Texas, pp. 269-273 (6-10 August 1984). Also Appendix G of this report. Tl
L.H. Quam, “Hierarchical Warp Stereo,” Proc. DARPA Image Understanding Workshop, - ;“‘4
New Orleans, Louisiana, (3-4 October 1984). Also Appendix F of this report. e . 1
G.B. Smith, A Fast Surface Interpolation Technique, Technical Note 333, Artificial j
Intelligence Center, SRI International, Menlo Park, California (August 1984). Also Appendix PRI,
E of this report. T
L e~
G.B. Smith and H.C. Wolf, Image-to-Image Correspondence: Linear-Structure Matching, - Q .

=

Technical Note 331, Artificial Intelligence Center, SRI International, Menlo Park, California
(July 19284). Also Appendix I of this report.

T.M. Strat, “Spatial Reasoning from Line Drawings of Polyhedra,” Proc. IEEE Workshop
on Computer Vision: Representation and Control, Annapolis, Maryland (April 1984). Also
Appendix B of this report.

T.M. Strat, “Recovering the Camera Parameters from a Transformation Matrix,” Proec.
DARPA Image Understanding Workshop, New Orleans, Louisiana (October 1984). Also
Appendix C of this report.




APPENDIX A

Choosing a Basis for Perceptual Space
By: Stephen T. Barnard

R




CHOOSING A BASIS FOR PERCEPTUAL SPACE

Bv: Stephen T. Barnard, Senior Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division




Abstract e

If it is possible to interpret an image as a projection of rectangular forms, there S e
is a strong tendency for people to do so. In effect, a mathematical basis for a
vector space appropriate to the world, rather than to the image, is selected. A
computational solution to this problem is presented. It works by backprojecting
image features into three-dimensional space, thereby generating (potentially) all
possible interpretations, and by selecting those which are maximally orthogonal.
In general, two solutions that correspond to perceptual reversals are found. The
problem of choosing one of these is related to the knowledge of verticality. A
measure of consistency of image features with a hypothetical solution is defined. In
conclusion, the model supports an information-theortic interpretation of the Gestalt
view of perception.
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1. Introduction

Why do we see the pattern of lines in Figure 1 as a right-angled corner? First, we
must recognize that this is an illusion. (Let’s call it the “right-angle illusion.”)
There is no strict, logical reason to interpret this figure in such a way: there
are infinitely many three-dimensional spatial configurations of line segments that
could have “explained” it. Nevertheless, we do see it in a special way — thus,
we experience an illusion. Is it possible to understand this from a computational
point-of-view?

The right-angle illusion does not depend on the three lines meeting at a common
vertex. The pattern in Figure 2 evokes a comparable impression and it has no
common vertex. The illusion is strengthened by rotating the pattern so that one
line can be seen as vertical and the others as horizontal. This can be checked
by rotating Figure 2 ninety degrees. Does the illusion still seem as vivid? On
the other hand, more complex patterns, such as Figure 3, do not necessarily lead
to right-angled interpretations, but, in these cases, the viewer is given additional
constraining information beyond three line segments. If three line segments form
two very acute angles, such as in Figure 4, they will not be seen as right-angled,
but then no such interpretation is geometrically possible.

In summary, it seems that, in the absence of additional information, three non-
colinear line segments will be seen as perpendicular lines in space, if such an in-
terpretation is possible. There is strong experimental evidence for this hypothesis.
Attneave and Frost [1] found that the perceived orientations of lines were highly
predictable from hypothetical orientations implied by right-angled interpretations.
Perkins [2] tested the ability to discriminate between right-angled and non-right-
angled forms. He found that when an image could be explained by a right-angled
interpretation it would almost always be perceived in that way.

At first, one might think the right-angle illusions too sparse to be meaningful.
They contain so little information. Could they ever compare to real visual expe-
rience, with its abundance of data? Consider the familiar Ames-room illusion (3]
(Figure 5). A weird, trapezoidal room is contrived to look normal (i.e., rectangular)
from a particular point-of-view. Objects in the room are seen incorrectly: a man
on one side of the room appears to be a midget, while another on the opposite side
appears to be a giant. The Ames room illusion and the right-angle illusion have
one critical point in common: in both cases, rectilinear perceptions are constructed
from too little evidence. In the Ames room, furthermore, the effect is so strong
that it dominates other important information for depth perception (such as size
constancy). In an effort to make the distorted room look normal, our perception
creates an incorrect geometrical interpretation that implies incorrect metric rela-
tions between objects. In effect, we perceive the space in which the room and the
objects exist, rather than perceiving the room and the objects in isolation.

In this sense, the right-angle illusion is simply a minimal case of the Ames room.
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Figure 1: A Right-Angle Illusion
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Figure 2: A Common Vertex is not Required
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,' Figure 4: A Pattern that Does Not Admit a Right-Angled Interpretation

The difference between the two is that the Ames room contains abundant infor-
. mation for a rectilinear interpretation, whereas a pattern of three line segments
] contains the bare minimum. Any three mutually orthogonal lines from the Ames
:.: 4







room will produce an acceptable right-angle illusion, and, furthemore, all these illu-
sions will be consistent in the sense of aligning with the natural coordinate system
of the (imagined) room.

There are two reasons to be interested in this problem. First, a solution might
suggest fundamental principles of perception. Human perception is an odd, com-
plex, but remarkably consistent and efficient process. It “reasons” from incomplete
evidence and almost never makes a serious error. Understanding this peculiar (and
awesome) ability is the central task of vision research [4]. A second, pragmatic
reason is that these patterns are quite common in images of natural scenes (see
Figure 6). An algorithm that could make sense of them could contribute a basic
capability to a larger machine vision system.

An early attack on a similar problem was directed at the so-called “blocks world.”
(See Mackworth [5] for a good summary of this line of research.) In a paper that
pioneered the field of scene analysis, Roberts described a system for recognizing a
small collection of simple, generic polyhedral shapes [6]. Whereas Roberts’ meth-
ods produced complete metric descriptions of scenes, the blocks-world work that
followed was aimed at segmentation and qualitative description. The methods were
fundamentally syntactic and viewed the problem of blocks-world interpretation as
a matter of parsing line drawings into allowable configurations of line and vertex
types. The simplification of orthographic projection was introduced, and the effects
of perspective were considered irrelevant. To the extent that metric constraints were
used {7], (8], they were relatively weak and did not generalize in a straightforward
way to perspective.

The approach presented here is quite different. A right-angle illusion, or 2 more
complex image of an Ames room, or a blocks-world scene, or a natural scene such as
Figure 6, imply certain interpretations for geometrical reasons alone. Specifically,
intepretations that are in some sense “orthogonal” are preferred. A method for
finding such interpretations for right-angle illusions will be presented. The approach
is to seek a three-dimensional description that simultaneously accounts for the two-
dimensional figure and the three-dimensional phenomenal perception. In contrast
to the blocks-world results, the method is as easily stated for perspective as for
orthography, and produces quantitative answers. It has a simple mathematical
representation and computer implementation.
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Figure 6: A Real Scene with Right-Angle Configurations




MmNl wL e L W TR TR e e TTRT AT W T IVINN —

Y

oL

2. The Computational Model

In this section a formal mathematical model will be presented as a computa-
tional explanation of the right-angle illusion. The model consists of a method for
constructing interpretations that are orthogonal and that are in the form of triplets
of unit vectors. In essence, the interpretation constructs an alternative basis for
the perceived space surrounding the viewer.

The best way to think of the method is as follows:

e A basis has six degrees of freedom (two degrees of freedom for each basis
vector).
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e Each line supplies one constraint. That is, each line constrains one of the basis
vectors to a one-parameter family of vectors.

o The space of possible bases, therefore, is three-dimensional.

e The optimum basis is the one that is “most orthogonal.” There will be two of
these, in general.

2.1. The Most Orthogonal Basis

A system of three nonparallel, noncoplanar lines (orthogonal or not) defines a
basis for a three-dimensional vector space. The goal is to find the basis that
simultaneously is “most orthogonal” and is consistent with (i.e., explains) the two-
dimensional pattern. This requires two elements: (1) a way to represent and
generate the set of possible bases, and (2) a precise definition of the intuitive notion
of “most orthogonal.”

Let us call a pattern of three noncollinear, two-dimensional line segments (such as
those shown in Figures 1 and 2) a configuration. We are not concerned with the
length or the endpoints of the line segments. All collinear segments are considered
identical. A configuration is assumed to be the result of a perspective projection of
three lines in three-dimensional space (Figure 7). We will call any three such lines
that produce a configuration an admissible solution to the configuration. Figure
7 illustrates how a configuration constrains the set of admissible solutions: the three
lines of an admissible solution are constrained to lie in three planes determined by
the line segments in the configuration. These planes are called interpretation
planes. A configuration therefore can be characterized by the unit normals of
three interpretation planes: (¢,, d,, ¢;).

Clearly, the distances of the lines from the viewer are irrelevant. The lines are
only required to have certain orientations and to lie in certain interpretation planes.
We therefore consider all admissible solutions of a particular configuration consist-
ing of lines of the same orientation to be equivalent. A class of equivalent admis-
sible solutions defines an admissible basis. The basis consists of three unit vectors
rooted at the origin (the center of projection), lying in the interpretation planes,
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NOTE: Indicated lines in the image plane are the configuration;
iines in the interpretstion planes are an sdmissible solution.

Figure 7: Admissible Solutions
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and parallel to the respective lines in the admissible solutions. These vectors can
be generated in the standard, viewer-centered coordinate system. (This coordinate
. system is chosen such that the origin is at the projection point; the z, y, and 2z axes
5 are in the directions right, up, and forward with respect to the observer; and the
b image plane is the plane z = 1. !)

F Let the three basis vectors be denoted by e;, e;, and e;. Remember that e, lies in
! é,, etc. We can write a basis vector e in ¢ as a function of a scalar 6; for example,
e;(#) is in plane ¢; and at angle & from the plane z = 0 (see Figure 8). The algebra
for deriving this function is straightforward but somewhat tedious (see appendix).

b We can now represent the set of admissible bases consistent with a configuration

(¢11 ¢2) ¢3):

S = {[81(01), 02(02), 33(03)] —r < oly 02' 08 S 11'}

Generating elements of this set is simply a matter of generating and substituting
values for 4,, 0,, and 6.

T

The “orthogonality” of an admissible solution can be stated in a natural way as
a triple product:

Vf—‘en'(ezxea)

This equation gives the volume of a parallelepiped associated with the three basis
vectors (Figure 9). It is sometimes called the box product. The triple product has
a maximum {or minimum) value of 1 (or —1) only when the vectors constitute an
orthogonal basis. In the first case they form a left-handed basis, and in the second
case a right-handed one. ? The triple product has a value zerc only when the three
basis vectors are coplanar (i.e., linearly dependent).

We can find the most orthogonal basis by searching the three-dimensional space
of admissible solutions for those with maximum or minimum V. In practice, there
seem to be a unique minimum and maximum when an orthogonal solution is possi-
ble, and these extrema can be reached by the method of steepest ascent (or descent)
from an arbitrary starting position. There is currently no proof of these conjec-
tures, but they have held true for many different examples.

Figure 10 shows the starting point (§; = 0; = 0; = 0; i.e., the flat parallelepiped
lying in the image plane), two intermediate solutions, and the final, optimal solution.
The figures are produced by constructing parallelepipeds from the bases, centering
them at the point (0,0,3) in the viewer coordinate system, and projecting them
into the image plane with hidden-line removal. The initial parallelepiped (shown
in (a)) has zero volume because all the vectors lie in one plane. The next two
(shown in (b) and (c)) have successively larger volumes (hence the associated bases
are more orthogonal). The final parallelepiped (shown in (d)) is actually a cube,
and its associated basis is truly orthogonal. Figure 11 puts the solution in context.

INote that this is a left-handed coordinate system.
“Because we begin with s left-handed viewer coordinate system, we apply the left-hand rule when computing the
eross product.

''''''''''''




Figure 8: Basis Vector in an Interpretation Plane
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Figure 9: Parallelepiped Associated with Basis Vectors fiij-f:: 1
At this point a discussion of the nature of the interpretation prodiced by this o !~-3
model is appropriate. It is a scene-centered (or object-centered) interpretation in
the sense of orientation; that is, it decouples the natural orientation of the scene ';'}
(or the object) from that of the viewer. It is a viewer-centered interpretation in the : ]
sense of position; that is, the origin of the most orthogonal basis is the same as the RS
natural origin of the viewer (the center of projection). -
2.2. Two Solutions: Which to Choose? K

There are two ways to choose a most orthogonal basis: we can either maximize or
minimize V. As mentioned above, 2 maximum V" implies a left-handed basis. and a
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Figure 10: An Example
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Figure 11: The Interpretation of Figure 10d in Context

minimum V a right-handed basis. The two solutions actually represent perceptual
reversals. Is there any reason to choose one or the other? The handedness property
is not significant because it is merely an artifact of the arbitrary direction sense of
the interpretation-plane normals.

In Fig:re 12, a configuration and two alternate solutions are shown. For some
reason, solution (b) does not seem to be as “good” as (a), even though, from a
strictly mathematical point-of-view, it must be. The answer is suggested in our
experiment of rotating Figure 2. The “good” solution is oriented in a way that is
consistent with our notion of vertical and horizontal, but the other one is not.

In the everyday world, the effect of gravity imparts a special meaning to the “verti-
cal” direction; similarly, while there is no unique “horizontal” direction, horizontal
lines are constrained to be perpendicular to the vertical direction. All everyday
scenes have a natural horizon, which may or may not be directly visible. Even if
it is not directly visible, the horizon is fixed by knowledge of the vertical direction,
which, presumably, i1s available from other visual cues and from the mechanism
of the inner ear. When we view a picture, we prefer it to be aligned so that the
natural horizon lies across the visual field normally (i.e., horizontally in the image}.

13




(a) (b)

Figure 12: Two Alternate Solutions

It may be helpful to consider the relationship between the most orthogonal basis
and the concept of vanishing points and lines. It is well-known that the perspective
projections of parallel lines meet at common points in the image, called vanishing
points. It has been shown that finding a vanishing point of a line is equivalent
to finding the orientation of the line [9]. Hence, by finding the orientation of a
basis vector, we determine the vanishing point of all lines parallel to it. A close
examination of Figure 12 will show that, when the opposite edges of a side of the
parallelepiped are extended, they intersect the extended lines of the configuration at
vanishing points. Each of the two orthogonal bases therefore imply three vanishing
points. Furthermore, if two of the vanishing points can be connected by a horizontal
line (as in Figure 12(a)), the associated basis vectors can be interpreted as horizontal
in 3-dimensional space.

2.3. Consistency

Suppose a line segment is added to a right-angle illusion. In Figure 13, three
additional line segments, [y, l2, and /; are shown. Lines {, and l» seem to “fit” the
rest of the illusion, while /5 does not. That is, !, and /> can be interpreted as paralicl
or nearly parallel to at least one of the basis vectors, but /3 cannot. In terms cf
vanishing points, we could consider all possible vanishing points of a line. If it had
a possible vanishing point close to a vanishing point of a basis vector. it could be
interpreted as parallel or nearly parallel to the basis vector.

Accordingly, given a basis [e;, e;, €;] and a line segment ! with possible interpre-
tations e(0), we can state a estimate of I's consistency with the basis as:

C= {m‘nx(le(o) e]:1=1,23}.

Each element of C is the absolute value of the cosine of the minimum possible angle
between one of the basis vectors and a three-dimensional linc that projects to I. i;
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L3 (79 .77 .88
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Figure 13: Consistencies of Three Lines

{ can be interpreted as being parallel to a basis vector, the corresponding element
of C will be one; otherwise, it will be less than one. The consistency values for /,,
l;, and I3 are shown in Figure 13. Note that I, is consistent with e, only, but I, is
consistent with both e; and es. Because /» is on the horizon, it intersects both of
the horizontal vanishing points. Line l3-is not very consistent with any basis vector.

This notion of consistency points to a way of finding the best interpretation for
a large collection of lines, only some of which form a natural basis. One approach
would be to select random triples of lines, solve for the most orthogonal basis,
calculate the consistencies of the other lines, and choose the basis that was in some
sense most consistent [10]. In the end, some lines would be inconsistent with the
chosen basis and should be interpreted as having unknown orientations. A similar
approach could be used to segment a scene into groups of lines that are related by
virtue of being consistent with a particular basis.

It is quite possible for a configuration to lead to a most orthogonal basis that is
not actually orthogenal (for example, three line segments separated by very acute
angles, such as in Figure 4). In such a case, the method will yield a sclution with
|[¥] < 1. A nonorthogonal solution should probably be rejected. Of course, an
orthogonal solution may also be incorrect (in the sense that it does not explain
three lines in a scene correctly, because the lines are not really orthogonal). The
important point is that. given no more information than what is included in a single
configuration, the most orthogonal interpretation is reasonable.
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3. Conclusions

The computational model presented in this paper is radically different from a
widely prevailing view (e.g., see Marr [11]) that can be paraphrased as follows:

e Largely static, unintelligent processes convert an image into a collection of
tokens, which comprise a discrete, explicit encoding of the information in the
image (Marr’s primal sketch).

o Evidence for local properties of surfaces (depth-from-viewer, orientation, cur-
vature, reflectance, etc.) is extracted from the primal sketch by more-or-
less autonomous processes (stereo, motion, shape-from-contour, shape-from-
shading, etc.).

o This evidence is collected into a “2.5D” representation of the scene, meaning,
an integrated description of surfaces in the coordinate system of the viewer.

o Instances of objects are found in the 2.5D representation (e.g., generalized
cylinders).

e Finally, a description of the scene is constructed in terms of these objects.

In the model presented here, there s no 2.5D sketch. Furthermore, instead of a
multiplicity of processes producing local, viewer-centered estimates, a single process
produces a partial, scene-centered representation directly. The primal sketch retains
its role, albeit in a more modest form — it essentially reduces to line-finding. This
model is unconcerned with specific surfaces and objects. Instead, by producing a
natural basis, it estimates a global property of the entire space surrounding the
viewer.

This approach is most closely related to recent research on shape from contour
[9], [12], [13], [14]. The general idea that relates this research is to backproject
image contours onto planes of different orientations, and to choose, as the interpre-
tation, the plane that simplifies some backprojected property. Several measures of
simplicity are suggested. For example, Brady and Yuille use compactness, defined
as the ratio of the area of the backprojected contour to the square of its perimeter;
Barnard uses the uniformity of backprojected curvature; Witkin uses the degree
of uniformity of the distribution of backprojected tangent directions. The model
presented here yields interpretations not of the orientation of planes. but of space
itself. Nevertheless, the philosophy is the same: to choose the most simple back-
projection — in this case, simple in the sense of most orthogonal.

The Gestalt view of perception holds that percepts that are simple are preferrcd
over those that are not. The modern version of Gestalt is that the percepts that
can be most economically encoded are the ones preferred [15]. It is interesting that
an orthogonal basis can be more economically encoded that a general one; that is,
an orthogonal basis is more redundant than a general one. An orthogonal basis
can be specified by any two of its basis vectors plus an indication of its handedness.




........................

A general basis, however, requires a complete specification of all its basis vectors. e m 2]
The results in this paper are, therefore, consistent with, and lend support to, the :
information-theoretic version of Gestalt theory.

Of course, the model presented here is extremely simple and can in no way be
considered a complete model of visual perception. Nevertheless, I feel that it does
illustrate an important principle that is very likely to be used in human perception.
- Much work remains to be done to generalize and extend the model. The discussion -
of consistency in Section 2.3 points to one kind of generalization. The case of closed L
figures such as Figure 3 can be explained by an extension of the model, and this S
is a topic of current research. It remains to be seen whether the approach can be ST
_ applied to curved contours and surfaces. e
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A. Derivation of Functional Description of Basis Vectors
Given an interpretation plane represented by its unit normal

¢= (¢n ¢m ¢3)
we want to find an expression for the set of unit vectors in ¢ (Figure 8):
{v=v(0):—x <0< 7}.

We will develop and solve a system of three nonlinear equations in three unknowns:
the components of v.

The vector v(0) lies in the plane z = 0. We can impose an arbitrary directional
sense to @ with
v(0) X v=¢sind. (1)

This equation must hold, because v is perpendicular to the vector ¢. (Refer to
Figure 8. Remember that, because we use a left-handed coordinate system, we
must apply the left-hand rule for a geometric interpretation of the vector cross
product.)

Because v is a unit vector, it must satisfy

V=1 (2)

Because v is in the interpretation plane ¢, it must satisfy

v-¢=0. (3)

Our system of equations is (1), (2), and (3). We will solve for v by first using (1)
to get a simple expression for v;, then substituting this in (2) and (3), eliminating
vy, and finally solving the resulting quadratic equation for v,.

Let
D= /o3 + 3.

v(0) must be of the form:
1
v(0) = (5)("¢w s, 0).
This is because it must simultaneously be in the direction

¢ X (oy o, l) = (_¢m ¢2a 0)
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and satisfy
viti+oi=1

Expanding (1), we get
v(0) X v = (3){—0y, 2,0} X (v:, vy, v:)
= (LNb:0s, 6y0s, (—yvy — $22.))
= (§. sin 6§, ¢, sin 0, 4, sin 6).
From the first component, we obtain our expression for v,:

v, = Dsind. (4)

Substituting (4) into (2) and (3) and expanding yields
v+ v+ D*sin*0=1 (5)

and
v,05 + v,0, + D(sin 8)¢, = 0. (6)

Solving (8) for vy, substituting in (5), and collecting terms yields a quadratic in
vyl

D*v? + 29, D(sin 8)v, + D*(sin® 0)(¢3 + ¢7) — 87 = 0. (7)

We solve this for v,:

5= (3)~4.0,(sin 0) 2 \flsio® O)636% — D} + 0N+ ol ()

Now that we have expressions for v, (8) and v, (4), we can easily soive for v,
using (2).

Equation (7) has two solutions; the problem of which one to use can be resolved
by observing that equation (3) is satisfied {or two interpretation planes: ¢ ond —o.
This ambiguity results in the two solutions. Since the choice between ¢ and —o is
arbitrary, we can choose one and then use the appropriate form cf (3).
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Spatial Reasoning from Line Drawings of Polyhedra
By: Thomas M. Strat
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SPATIAL REASONING FROM LINE DRAWINGS OF
POLYHEDRA

Thomas M. Strat

SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Abstract

A method is presented for transforming a set of line draw-
ings of a polyhedral scene into a representation that embodies
the three-dimensional structure of the scene. The line draw-
ings are first converied to machine-readable form and then back-
projected to acquire a wire frame skeleton of the sceme. A
novel three-dimensional constraint propagation scheme is then
employed to transform the wire frame to a description of the solid
objects which compose the scene. This process has applications
in computer-aided design as well as in machine understanding of
multiple images. The paper concludes with a discussion of issues
telated to achieving the same result from a single view.

1. Introduction

Machines that must reason about or function in a three-
dimensional world mnst be equipped with models of objects in
that world. A multitude of representations has been devised
for three-dimensional models (1], yet the specification of individ-
nal models can be a tedious undertaking. This paper examines
methods for computing a three-dimensional model of s particu-
lar class of ohjects from a particulae form of input—polyhedral
objects from line drawings.

Rescarchers in computer-aided design have produced numer-
ons systems that manipulate models of solid objects to assist in
the design. analysis, or fabrication of everything from machine
parts to factories. The act of specifying a model is one of the
most difficult tasks associated with these systems.

In an interactive image-understanding system, there are sev-
eral sources of line drawings. One can envision a very competent
line-finder that automatically extracts the line drawings of se-
lected objects. Alternatively, the user can specify the lines in an
image by pointing at their endpoints with a mouse or other in-
put device. A third possibility is for the uscr to draw the figures
frechand or with mechanical assistance. Whatever the means of
entry, the objective is to produce a three-dimensional sketch that
captures the volumetric nature of the objects.

This paper is concerned with deriving the representation ge-
ometrically, as opposed to using model-based representations. It
is divided into two parts: The first prescnts an algorithm for de-
riving a volumetric description of s polyhedral scene when mul-

The rrsearch reported herein was supported by the Defense Advanced Re-
scarch Projects Agency under Contract No. MDA 903-83-C.0027.

tiple views are available; the second part explores the problem of
sccomplishing this task when only one line drawing is available.

2. Multiple Views

The algorithm to be deacribed solves for a three-dimensional
description of a scene when several views are available. The over-
all process can be thought of as accepting a set of line drawings of
8 scene as input and providing as output a display of the object
from any angle, with all hidden lines removed. The algorithm
consists of four sequentisl modules called input, projection, wire
{rame, and display.

The required input is s set of two or more line drawings
and the angular refationships among them. A line drawing is
restricted to be the projection (orthographic or perspective) of a
polyhedron from a particular vantage point and, as a result, is a
collection of straight line segments.

The input module is responsible for producing a data struc-
ture that specifies the positions of all lines and their endpoints
in o line drawing. Its actual form will vary with the source of
the line drawing, as different input processes dictate different
procedures for constructing the data structure.

The projection module computes the three-dimensional co-
ordinates of vertices and edges that may have given rise to the
endpoints and lines in the drawings. The ontput of the projection
module is in the form of & three-dimensional wire frame, which
is represented as a list of vertices and edges. The computation
is earried out by back-projecting the points in cach line deawing
and determining their points of intersection.

Next in the pipeline is the wire frame module, which is the

. most interesting of the four. Its task is to derive the solid oh-

ject that corresponds to the given wire frame. It employs a
Waltz-style constraint propagation scheme [8], but differs sig-
nificantly by assigning labels to spatial regions and propagating
them throughout the three-dimensional structure, in contrast
with propagation across a two-dimensional line drawing. Only
two labels are allowed (SOLID and HOLE), and a consistent la-
beling is usually achieved very quickly.

The display module uses the labeled output of the wire frame
module to produce a display of the object, with hidden lines
removed. As will be seen shortly, the hidden-line algorithm is
somewhat unusual in the way it takes advantage of the label
information in the wire frame.




[}

Figure 1: Photographs of the Transamerica Building

Figure 2: Line Drawings of the Transamerica Building

2.1. The Input Module

The input module is actually a set of alternative modules
The one to he used depends on the source of the line drawing. In
all cascs, a line drawing is defined to be composed of a set of
line scgments. to be referred to as lines, and their points of inter-
section, to be referred to as endpoints. Lines are restricted to
intersect only at their endpoints. No curves are permitted since
the line drawing is assumed to he the projection of a polyhedron
Furthermore, all edges of an object, visible or not, must appear
in all line drawings. That is, hidden lines, which are normally
represented as dashed lines in engineering drawings, are to be
depicted like any other line, since the algorithm does not accord
them any ~|n~r|‘|| treatment

The most direct means for specifyving the line drawing would
be to prov ide the coordinates of the endpoints 4‘\phrrl|_v Another
procedure is envisioned that allows specification of line drawings
in a more natural way

In one scenario, the user will sketch or trace a line drawing
directly mnto the system by means of a pointing device, such as
a mouse or graphics tablet. Inaccuracies inherent in this proce-
dure must be resolved before the data are passed to the projection
maodule. Sugihara presents a method for identifying incorrect line
drawings and correcting vertex position errors [7]. Regardless of
the method used, the input module provides a data base con-

taining the endpoints, lines, and viewpoint for each line diawing
As an example, Figure 1 shows two images of the Tran<amer-
ica Building in San Francisco. The line drawings of Figure 2
were obtained by tracing the edges of the building with a mouse

controlled cursor. The camera models of each image were com

puted on the basis of ground truth data obtained from a map of
San Francisco

2.2. The Projection Module

Given the data base specifying a set of line drawings of a
scene and the associated camera models, the projection module
determines the wire frame of the scene that could have given rise
to those drawings. A wire frame is a set of vertices and edges
where an edge is the intersection of two faces of an ohject, and
a vertex is the intersection of two edges. The algorithm follows
closely that of Wesley and Markowsky [9]

In the first phase, the vertices of the wire frame are com
puted. Figure 3 illustrates the geometry inv Ived. Any vertex

of the wire frame is constrained to lie on the line connectin
viewpoint and the endpoint that is the projection f the vertex in
the line drawing Such lines are constructed for ever nely

in every line drawing. The intersections of t} lines are com
puted and entered as vertices of the wire frame

procedure may find vertices that are not in [act vert




Figure 3: The geometry of backward projection.

wire frame. Some of these vertices are identified in later stages of
processing and discarded; the remainder are the result of alterna-
tive legal interpretations of the line drawings. It is also possible
that some real vertices may be missed, but, fortunately, they
can be found during the second phase of the projection module’s
operation.

In Phase two, the cdges of the wire frame are found. Two
vertices are connected by an edge only if that edge is consistent
with all views provided. An edge is consistent with a view if that
edge projects to a line in the view, to s set of continuous colinear
lines, or to a single endpoint. When all such edges have been
found, the edges are checked for internal intersections. Any such
intersections are the missing vertices of Phase one and are added
to the data base. Just as extra vertices may have been found
earlier, extra edges may arise for the same reasons.

In Phase three, any vertex with fewer than three incident
edges is climinated. (Realizable solid objects always have at least
three edges meeting at any vertex.) Any accompanying edges are
also removed and the pruning is continued until a stable config-
uration is reached. Usually, however, there are no vertices to be
removed in this manner.

At this point, s wire frame has been computed that is guar-
anteed to encompass all the edges and vertices of the object. If
the set of line drawings provided determines the object uniquely,
the wire frame will correspond exactly to the wire frame of the
object. If the line drawings are ambiguous, the wire frame may
contain vertices and edges present in one interpretation but ab-
sent in others. The ambiguous case can be accommodated by
invoking the wire frame module for each of the possible inter-
pretations. Tliose found to be inconsistent can be disregarded;
those found to have a legal interpretation can be construed as
alternative solutions. The remainder of this paper sssumes that
the wire frame has been determined uniquely.

2.3. The Wire Frame Module

The input to the wire frame module is a data structure rep-
resenting a wire frame that contains only edges and vertices that
correspond to true edges and vertices of the underlying scene.
The module’s job is to find out which regions sre occupied by
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Figure 5: Propagation of Intravertex Constraints.

solid matter and which are not, relative to the wire frame. Its
basic tool for performing this re ing is the spoke diagram
(Figure 4). The spoke diagram it an edge-on view of a vertex.
The spokes are the projections of the edges at a vertex onto the
plane that is perpendicular to the selected edge. The spoke di-
agram in the figure is the view along edge E; toward vertex V7,
such that E, itsell projects out of the drawing. The sector be-
tween two spokes represents the solid angle defined by the two
edges corresponding to the two spokes and the selected edge.
The solid angle must either be filled completely with mattcr or
be completely void of matter, because boundaries between mat-
ter and space can oceur only at faces and all faces are bounded
by edges. Therefore, each sector can be labeled by cither SOLID
or HOLE to reflect this choice. The task of the wire frame module
is then to assign a label of SOLID or HOLE to every such solid
angle, as defined by the wire frame.

As mentioned earlier, the wire frame module is a constraint
propagation algorithm. Three separate processes serve to con-
strain and propagate the labelings:

1. Intravertex constraints—These serve to propagate la-
bels (SOLID or HOLE) among the spoke diagrams at a
given vertex, as in the example of Figure 5. Here an as-
signment of SOLID to the sector between the spokes corre-
sponding to edges E3 and Ej, in the spoke diagram of E, at
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Figure 6: Propagation of Intervertex Constraints.

vertex 17, can be propagated to constrain the other spoke
diagrams at 1y, In the spoke diagram of edge E;, the sec-
tor hetween edges Fy and Es must also be labeled SOLID.

L The same applics to edge Fy. Corresponding sectors must
\ be labeled identieally because they are representations of
the same voleme in space. Care must be taken to account

for sectors wider than 180°,
- 2. Intervertex constraints—These serve to propagate la-
E hels from one vertex to another, as in Figure 6. Here the
newly assigned label of SOLID to the sector between E,
= and Fj. in the spoke diagram of edge E. at vertex Vy, can
- be propagated along F2 to constrain the spoke diagrams
. at 5. In this cace the sector between £y and Es must

also he SOLID. The two pairs of edges define a dihedral
angle along E». This type of constraint propagation is al-
ways valid beeanse 1he state can change between SOLID
and HOLE only at a face. If a face occurred somewhere
along ;. it would interscet with E; at a point other than
one of its endpoints, which is precluded by the definition
of a wire frame.

3. Vertex Labeling Constraints—Some potential label-
ing= of a spoke diagram are not legal. It is conceivable to
determine the sct of legal labelings for teihedral vertices,
tetrahedral verticrs, ete., but in practice this becomes un-
wicldy. As implemented, the wire frame module applies
a somewhat weaker constraint. It prohibits any labeling
that ix all SOLIDs or all HOLEs. Since such an assignment
would render the edge nonexistent, it could not be a legal
interpretation of the wire frame. In practice, this rather
weak constraint has generally proved satisfactory.

Unfortunately, there are numerous special cases that arise
during exeention. The intravertex constraints must distinguish
between angles greater or less than 180° to cnsure proper label-
ing. The intervertex constraints must be applied properly when
the spoke diagrams at each endpoint do not coincide. Extrs
spokes and missing spokes are two such cases.

The wire frame module is a control stencture for propagating
these three constraints throughout s wire frame. For eficiency,
the implementation actually applies the three coastraints simul-
tancously. it includes checks for completion and inconsistencies.
Although a given wire frame may be ambiguous, (i.e., allow more
than one interpretation), the algorithm is guaranteed to termi-

VISIBLE EDGE

INVISIBLE EDGE

Figure 7: Hidden-line removal.

nate. Each step assigns a lahel, does nothing, or dctects an
inconsistency and quits. Once a label is assigned, it is never re-
moved. The algorithm proceeds until all sectors have labicls or no
change has been detected through a complcte iteration. If some
sectors remain unlabeled, the alzorithm is continued separately
for each possible labeling (SOLID or HOLE) until a completely
labeled wire frame is obtained.

2.4. The Display Module

The display module uses the labels computed by the wire
frame module to climinate lines hidden from view. Most of the
lines to be eliminated can be readily identificd by the process
illustrated in Figure 7. For each edge, the dircction to the view-
point is computed and that ray is superimposed on the spoke dia-
gram. [f the ray picrces a SOLID scctor, that edge is a renrward-
facing edge and is not displayed. [f the ray falls into a HOLE
sector, further processing is needed. The projection of the edge
is checked for intersection with the projection of all other visible
edges. If po such intersection exists, the edge is displayed. {f an
intersection is found, the intersecting edge is examined to deter-
mine which side of the edge is occluded (or if both are). The edge
is split at its point of intersection and cachi part is handled in the
same manner recursively. [t shonld he noted that this algorithm
will fail to eliminate certain occluded edges if their projections
do not intersect with any other projected edges. A less efficient
search would be required to eliminate these.

Returning to the example of the Transamerica Ruilding of
Figure 1, 8 wire frame was obtained from the line drawings and
was subsequently processed by the wire frame module. Figuee 8
shows s perspective view of the result, with hidden lines removed.
indicating realization of the correct wire frame and the successful
assignment of solid material relative to it.

2.8. Summary

The class of objects that may be modeled is not as restrictive
88 it may seem at first glance. Any polyhedron is permissible
and may contain arbitrary concavitics and holes. Curves may be
spproximated by & number of line segments. Several polyhedra
may be juxtaposed in any manner.

The line drawings may be either orthographic or perspective,
and from sny vantage point. Accidental alignments pose no par-
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Figure 8: Hidden-line removal on the Transamerica Building.

ticular problem. A unigne wire frame will he constructed if any
drawing is in general position (1.¢., no vertices or ecdges coincide
in the projection). Reconstruction of a unique wire frame is also
guaranteed if corresponding lines in each view are designated.

Just as a set of line drawings may define more than one wire
frame, some wire frames may define more than one object. The
wire frame module will derive all possible interpretations when
confronted with an ambiguous wire frame

Stronger vertex-labeling constraints may be necessary to as-
sure the correct inferpretation of some objects. Further testing
is required to refine the constraints and demonstrate the ability
to derive volumetric descriptions of a wide range of polyhedral
scenes.

3. Single View

We have described a procedure that makes it possible to
infer the shape of an object from several views. A means for ac-
complishing this task from a single view is also desirable. After
all, humans appear to have little trouble constructing a three-
dimensional representation of an arbitrary object from a single
line drawing. While this section does not offer a method for ap-
proximating human performance, it does point to some promising
approaches toward that ohjective

The most relevant early work on polyhedral-scene interpre-
tation is by Mackworth [G]. His program, POLY, has provided
a framework for subcequent shape-from-line-drawing methods.
POLY first achieves a qualitative interpretation of a line drawing
by parsing the line segments to ascertain which of them are con-
vex, concave, or occluding. The convex and concave edges yield
constraints that can often be used to determine the orientation
of the polyhedral faces quantitatively. By using the now famil-
iar technique, the orientations of faces that meet at an edge are
restricted to lie on a line in gradient space that is perpendicu-
lar to the image line of that edge. Combining these constraints
through triangulation often yields the orientations of all the faces.

—_

(a) (b) (c)

Figure 9: An ambiguous drawing.
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Figure 10: Another ambiguous drawing.

Unfortunately, POLY has many shortcomings that limit its com-
petence, as pointed out by Draper [3]. lle presents methods for
overcoming some of POLY's limitations, yet human-level perfor-
mance is still beyond reach.

One observation that dampens hope of ever producing an
algorithmic solution to the problem is that human perception of
line drawings can be extremely subjective. Figure 9(a) shows a
triangular pyramid that can be variously interpreted as either
very flat (b), or very pointed and elongated (c). In gradient
space, this phenomenon manifests itself in ihe fact that the scale
of the gradient space cannot be resolved from a line drawing
algebraically without higher-level assumptions. In fact, neither
the scale nor the origin of gradient space can be determined by
existing methods that utilize the gradient-space representation

Recent work by Barnard [2] addresses this iccue of subjec
tive interpretation. For instance, if one is willing to assume that
the pyramid in Figure 9 is actually composed of mutually per
pendicular faces, that information can be used to specily the
orientations of all faces of the ohject uniquely. Moreover, wlhat
this accomplishes is to establish both the origin and seale of gra
dient space. Barnard’s procedure only requires identification of
three lines in the scene known to be orthogonal (they need not
intersect) in order to compute these guantitics. This represents a
powerful tool when eoupled with the purcly objective approach to
the interpretation of line drawings. The requircinent for finding
a set of mutually orthogonal lines is no great burden when o any
scenes of man-made objects are being examined, but one would
prefer a purcly general method for the subjective interpretation
of line drawings. Heuristics exploiting parallelism, symmetry



and compactness of description may provide a useful inroad.

The determination of the origin and scale of gradient space
is in itself not sufficient. for the interpretation of all faces in a
polyhedral scene. Figure 10 shows an object and its gradient-
space interpretation. Even if the orientation of face A is known
exactly, the locations in gradient space of faces B, C, and D are
still nnderdetermined. The figure is analytically ambiguous but
snbjectively resolvable; additional heuristics may be necessary to
find the solution.

Another issue inherent in the analysis of line drawings is
how best to cope with imprecise input. Line drawings may be
extracted from real images or may be hand-drawn. One would
peefer an algorithm that docs not degenerate completely when
confronted with inaceurate drawings. A drawing of an “impossi-
ble® object, that is, a drawing that does not correspond to any
geometrically possible object, should be interpreted as the “clos-
est” object that is geometrically permissible. Kanade’s algorithm
{4}, which works through itcrative minimization of errors, pro-
vides a framework for achieving this geal. One can conceive of
designing a system that theorctically supports only orthographic
line drawings, and using it to interpret perspective drawings. If
the focal length is sufficiently large, the perspective distortion
might be treated as drawing crror and an approximate interpre-
tation obtained. While the validity of this approach depends on
the application in mind, it does circumvent the difficulties of a
truly perspective model.

The gradicnt-space representation is unsuitable for analyzing
perspective drawings {5]. The primary reason is the inability to
capture the concept of sidedness of 8 plane in gradient space. Sid-
edness reasoning it essential to the interpretation of perspective
drawings hecause cither side of a plane may be visible, depend-
ing on the plane's location in a perspective drawing. Formalisms
based on the (iaussian sphere overcome this problem. The math-
ematics hecomes a little more complex (quadratic versus linear
equations), bt the two solutions to each quadratic equation, cor-
responding to the two sides of a plane in three-dimensional space,
enable quantitative analysis of perspective scenes.

4. Summary

Recovering the shape of an object from a single line drawing
of that object is a difficult problem. Further investigation is
necessary to achieve human-level competence.

The algorithm presented for interpreting scenes from multi-
ple views embodics a novel approach to a long-standing problem.
The type of spatial reasoning used promises to he applicable in
other situations as well. The technigiue may be successful when
only a portion of an object ia vicible and may perform adequately
even with imaccurate line drawings (such as those mis<ing a line
here or there). It is a local reasoning process that may be es-
pecially appropriate for supporting higher-level reasoning about
solid objects.
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Recovering the Camera Parameters
from a Transformation Matrix

Thomas M. Strat
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Abstract

The transformation of the three-dimensional coordinates of
a point to the two-dimensional coordinates of its image can be
expressed compactly as a 4 x 1 homogeneous coordinate transfor-
mation matrix in accordance with a particular imaging geometry.
The matrix can cither be derived analytically from knowledge
about the camera and the geometry of image formation, or it can
be computed empirically from the coordinates of a small num-
ber of three-dimensional points and their corresponding image
points. Despite the utility of the matrix in image understanding,
maotion tracking, and autonomous navigation, very little is under-
st.-od about the inverse problem of recovering the projection pa-
rameters from its coeflicients. Previous attempts have produced
solutions that require iteration or the solution of a set of simul-
taneous nonlincar equations. This paper shows how the location
and orientation of the camera, as well as the other parameters
of the image-formation process can easily be computed from the
homogencous coordinate transformation matrix. The problem is
formulated as a simple exercise in constructive geometry and the
solution is both noniterative and intuitively understandable.

1 Introduction

llomogeneous coordinates and the homogeneous coordinate trans-
Jormation matrir are a convenient means for representing arbi-
trary transformations, including perspective projection in a single
formalism. One such use for this matrix is as a camera transfor-
mation matrir that maps points in an object-centered coordinate
system into the corresponding points in image coordinates accord-
ing to a particular imaging geometry [7]. The camera transfor-
mation matrix has seen wide use in several disciplines. Rogers
and Adams present numerous applications in computer graphics
i8] Other fields that have made use of the camera transformation
matrix inchile stereo reconstruction, robot vision, photogramme-
try, numanned-vehicle guidance, and image understanding (5], [6),
{12]. {11]. Several techniques for computing the matrix have been
derived. yet very little is understood about how to recover the
projection parameters from the coefficients of the matrix.

Wlhen the location and orientation of the camera are known,
the camera transformation matrix that models the image forma-
tion process can casily be derived analytically [1]. This model
forms the basis for subsequent processing of images produced by
that eamera. On the other hand, when the location and orien-
tation of the camera are unknown, the parameters of image for-
mation sanst he derived from the correspondence between a set
of image features and a set of object features. Images obtained
from an wnknown source or from cameras mounted on moving

platforms exemplify contexts in which the imaging geometry may
not be known.

One approach to computing the parameters of the image for-
mation process directly is embodied in RANSAC, developed by
Fischler and Bolles [3}. RANSAC computes the camera location
directly from a set of landmarks with known three-dimensional
locations when, in addition, the focal fength and piercing point
are known.

Alternatively, several methods exist for estimating the coeffi-
cients of the camera transformation matrix from the correspon-
dence between image and object coordinates. Sutherland [10] de-
scribes a method to determine the matrix experimentally from
the image by using a least-squares technique to obtain the coef-
ficients from available ground truth data. A consideration of the
experimental errors involved and a means for improving accuracy
are described by Sobel [9).

The issue addressed in this paper is how to determine the
imaging geometry from a camera transformation matrix that has
been derived experimentally. For example, given a photograph
taken by an unknown camera from an unknown location and
which, moreover, may have been cropped and/or enlarged, how
can we recover the camera’s position and orientation and deter-
mine the extent to which the picture was cropped or enlarged? If
some ground truth data are available, an established lcast-squares
technique such as Sutherland’s can be used to derive the camera
transformation matrix, whereupon the problem reduces to that of
computing the values of the desired parameters from the matrix.
Ganapathy [4] recently published the first noniterative method for
solving this problem by posing it as a set of eleven simultaneous
nonlinear equations that can be solved to obtain the eleven inde-
pendent coeflicicnts of the camera transformation matrix. While
the method is successful at solving for camera location and orien-
tation, it is an algebraic one that provides little insight into the
underlying geometry. The method to be described here is a geo-
metric one that solves for the same parameters, but is posed as a
simple problem in constructive geometry and allows an intuitively
clear derivation.

This work has immediate application in several areas:

e Many algorithms in image understanding require knowledge
of the camera paranieters. These can be computed from an
arbitrary photograph by using the method presented here
when ground truth data is available.

L)
)

AR
RERAN




o Autonomous navigation can be posed as a problem in de-
riving camera parameters. A cruise missile, for instance.
conked obtain the camera transformation matrix from a ter-
rain model stored on board and then compute the camera
parameters that define the vehicle's location and heading.

A ~tationary camera viewing a robot arm workspace could
determine the position and orientation of the arm. Conspic-
uous marking of several points on & part of the manipulator
woukl allow their easy extraction from an image and pro-
vide the ground truth necessary for Sutherland’s algorithm
to ascertain the camera transformation matrix. The cam-
era paramcters can he derived from this matrix, and the
location and oricntation of the manipulator can then be ob-
tained relative to the stationary camera.

2 The Camera Transformation Matrix

As indicated carlier, the camera transformation matrix can
be used to model in a single formalism the effects of rotation,
translation. perspective, scaling, and cropping—i.e., all the vari-
ables associated with the normal imaging process. Here we re-
view the fundamentals of homogeneous coordinate transforma-
tions that are cxsential for understanding the decomposition to
be deseribed. The presence of an ideal lens and the absence of
any atmospheric distortions are assumed.

The imaging situation can be modeled as shown in Figure
I. The XY Z coordinate system represents the world or object-
centered coordinates. The center of projection (the location of
the lens) is shown as & point L in space. The image plane is a
plane between the lens and the object onto which the object is
projected to obtain the image. Each smage point is that point in
the image plane where the plane intersects the line connecting L
with the corresponding object point. The UVW coordinate system
is situated such that (u, v) are the image coordinates of an image
point and w = 0 defines the image plane. The perpendicular
distance hetween L and the image plane is the camera focal length,

In a homogeneous coordinate system, a three-dimensional point
(.r.y. 2) is represented as a four-component row vector, (¢z, ty, tz,t);
the three-dimensional coordinates are obtained by dividing through
Iy the fourth component. A point in the world is represented as
a fonr-component row vector and its projection in the image is
abtained by postmaltiplying by the 4 x 4 camera transformation
matrix:

x\ =u

{r.y.2. 1)\ = (au, sv, 5w, 5)

This homogencous coordinate system is most useful for modeling
the effect< of perspective projection—further details can be found
in Ballard and Brown [1].

The matrix M can be viewed as being composed of several
«imple transformations. While it is possible to decompose the
matrix in 8 variety of ways, the particular decomposition chosen
must capture all the degrees of freedom of the imaging geome-
try. The somewhat arbitrary choice used throughout this paper
is shown below:

M = (translate){rotate)(project)(scale)(crop)
M = TRPSC (1)

IMAGE POINTS
OBJECTY POINTS

FIGURE 1 THE IMAGING GEOMETRY

Each of the component transformations can be expressed as a
4 x 4 matrix; multiplying them together produces the camera
transformation matrix M. Details of the decomposition are given
below, .

2.1 Translation

Translation moves the image plane away from the object-centered
origin. To translate the plane by (rg, yo, 20) multiply by the ma.
trix

1 0 0 0
0 1 o 0

T= 0 0 1 ol
-rg =~y =2 |}

2.2 Rotation

The ovicntation of the camera is specified by the rotation ma-
trix R. which can be further decomposed to R = R, Ry R;. corre-
sponding to rotation about each of the principal axes. Clockwise
rotation by @ about the N axis while looking toward the origin is
accomplished by

1 0 0 0

R, = 0 cos® -sinf O
710 sin® cos® 0
0 0 0 1

Simifarly. clockwise rotation by ¢ about the newly rotated 1 axis
is represented by

cosp O sind O
0 1 0 0
By = -sing 0 cosé O

0 0o 0o 1

and rotation by ¢ about the new Z axis is given by

cosgt —siny 0 O

sinet cosyr 0 0
R:=1"% 0 10
0 0 01

The first two rotations, R, and R, scrve to align the Z axis with
the line of sight defined by the 11" axis. The final rotation. R,.
is within the image plane about the line of sight. Together, T
and R = Ry Ry R, account for the location and orientation of the
camera.
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FIGURE 2 PERSPECTIVE PROJECTION AFTER ROTATION AND TRANSLATION
2 = O is the image plgne.

2.3 Projection

P’ provides the distortion associated with perspective projec-
tion. Figure 2 shows the simplificd imaging geometry after trans-
lation and rotation have been accounted for. The camera locaiion
L is on the positive Z axis at a distance f from the origin. The
image plane passes through the origin and the world to be imaged
lies hehind the image plane. Analysis of similar triangles shows
that the image coordinates

(u.v) = (7%. 7%) .

Using homogencous coordinates, this perspective projection can
be obtained by multiplying the homogeneous coordinates of the
world point by the matrix

100 ©
010 0
P=1lo01 <11 ]|
000 1

The resulting row veetor is divided through by the fourth com-
ponent to renormalize the homogeneous coordinates, and then
projected orthographically onto the image plane w = 0 to yield
the proper perspective projection of the world point.

2.4 Scaling

The image coordinates can be scaled to reflect an enlargement
or ~hrinking of the image. Scaling by ks and k, in the U and V
directions is achieved with

ke 0 00
0 k 00
5= 0 010
0 0 01

Sealing the 11 axis is meaningless because the perspective projec-
tion always requires that « = 0.

2.5 Cropping

The effect of cropping a photograph is obtained by translating
the "V coordinates within the image plane. The following matrix
is used to shift the origin by (ug, vo):

FIGURE 3 DETERMINING THE LOCATION OF THE CAMERA

1 0o 00

0 1 00

¢= 0 0 10
-u -to 0 1

Note that neither scaling nor cropping affects the w and s co-
orclinates of the homogencous image point, so that orthographic
projection and renormalization can take place after the entire
teanxformation has been computed.

3 Recovering the Camera Parameters

The camera transformation matrix Af allows representation of
all cleven degrees of freedom associated with the image formation
process. These camera parameters are embedded in the matrix
in a way that makes their determination difficult. This section
presents a simple method that recovers the various parameters
associated with image formation. Its main advantages are that it
is both nonitcrative and geometric, enabling a clear understanding
of the equations involved.

The matrix M can be viewed as a function that maps world
coordinates into image coordinates according to the constraints
of Figure 1. For notational simplicity, we shall assume that all
matrix multiplications automatically normalize the homogeneous
coordinates of the resulting row vector. For example, u = x\M =
(sw.se, 5w, 8) = (u,e.w.1). The image formation process can
then be written as

(1.0.0.1) = orthoproject(x.\M), ()

where r is the homogencous coordinate of a world point, and
orthoproject(-) is a function that performs an orthographic pro-
jection along the w axis such that

orthoproject(u, v, w,1) = (u.v,0,1).

3.1 Location of the Camera

Figure 3 ilnstrates the technique for finding the center of pro-
jection. First, compute M=! for later use. Note that M will
always be invertible because all its components in Equation 1 are
elearly invertible. The location of the center of projection, L, can
he determined as {ollows:

Choose an arbitrary world point x; = (ry.9y. 21, 1) and com-
pute uy = %\, If we were to multiply w3 = (u, vq.uq,1) by
M~ we would obtain the original x,. Instead, first project u,




A s

NORMAL
VECTOA

PLANE THROUGH L
PARALLEL TO IMAGE PLANE

FIGURE 4 DETERMINING THE ORIENTATION OF THE CAMERA

to obtain orthoproject(u) = (uy,v,,0,1), where (uy,v,) are the
image coordinates of x,. Next, backproject this image point by
multiplying by M™% to obtain xjs. This specifies another world
point. Xy, which is different from the original x; but constrained
to lie along the line conneeting x; and the center of projection
[.. To confirm this, note that all points lying along the line con-
necting x, and L are transformed by M to points identified by
(#y. 0y 0. 1), where @ varies with each point. The converse must
also be true. That is, for any ar, (ug, vy, @, 1) M specifies a point
<omewhere along the line connecting x and L.

Repeat the above process with another point Xz to obtain the
point X2y, which must lie on the line connecting Xz and L. Now x;
and xyq. and X2 and Xa; define two lines that pass through L; their
intersection can be computed to obtain the world coordinates of
L. This method will fail, of course, if either x; or X lie in the
image plane or if X;. X2 and L are colinear. Because their choice is
arttrary. valid points can always be found that allow the unique
determination of L.

3.2 Orientation of the Camera

The orientation of the camera is defined by the orientation of
the image plane (Figure 4). The latter can easily be established
by oherving that world points lying in the plane that is parallel
to the image plane and that passes through the center of the lens
will map to infinity in image coordinates. The only way this can
happen for a finite world point is if the fourth component of the
hiomogeneous image coordinate is zero.

Thus. if

(r.y.2. )M = (u,v,0,0),

it follows that
Mgz + Moy + Mgz + My =0,

which is the cepuation of the plane through L parallel to the im-
awe plane.  From this equation it is clear that the vector n =
{Vie. Mar. May) i« normal to the image plane and parallel to the
camera’s direction of view.

The orientation in terms of rotations about the axes can be
calenlated by using spherieal coordinates such that

Moy
~Ms,

# = arctan

s

PRINCIPAL RAY
(LINE THROUGH ¢
PERPENDICULAR YO
IMAGE PLANE

ORIGIN OF
IMAGE PLANE

FIGURE 5 DETERMINING THE PIERCING POINT

amld

=My,

VMR + M3+ A,

where 8 is the clockwise rotation about the X axis and ¢ is the
clockwise rotation about the rotated V" axis. The final rotation
parameter, ¢ is the rotation within the image plane about the 11°
axis. The magnitude of ¢* cannot be obtained from the normal to
the image plane; instead. it requires a more complex derivation
that involves determination of the piercing point and the relative
scale factors. These values are derived in the following sections
and the value of ¢ is finally computed in Section 3.5.

© = aresin

3.3 Piercing Point, Principal Ray, and Cropping

' Much work in image understanding requires knowledge of the
prcreing point (or stare point) in an image. This is the point in an
image that corresponds to the world point at which the camera
was aimed. It is the point at which the principal ray (the ray along
which the camera was aimed) picrees the image plane (Figure 5).
The principal ray is assumed to be perpendicular to the image
plane.!

To find the piercing point, first find a point p along the prin-
cipal ray (other than L):

p=L+4kd,
where K ix any scalar exeept 0. The piercing point ug is given by
o = orthoproject{pM) = (ug.14.0.1)

beeause any point along the principal ray must project to the
picreing point in the image. The extent to which the image has
been erapped is given by (ug., rg).

3.4 Focal Length and Scale

When the center of projection is held a constant distance from
the seene. there is no way 1o tell the difference between scaling
the imze and varving the focal length. For example. doubling
the focal tength is equivalent to enlarging the picture by a factor
of two. The best one can hope for is a relation between the two

Y . .
The image plane in some cameras used in photogrammetry is not perpen-
dicular to the line of sight: this case, however, is not considered here
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FIGURE 6 DETERMINING THE SCALE FACTOR

parameters, On the other hand. if the focal length of the camera
is known. the cxact scale factors can be determined.

Figure 6 shows the geometry for computing the U-component
of the scale factor. First choose an arbitrary world point x;
(not on the principal ray) and compute its image point uy =
orthoproject{x; M} = (u1.v1,0,1). Conversion of these image
units to world units requires dividing by the scale factor such
that

) W ] "
=— and ;= —,
L] ‘.' 1 kv

where u) and v} are the distances of an image point from the
image origin. measured in world units. Next compute a, the angle
between the principal ray and the ray from L to Xx;, projected
in the plane v=0. Then it is clear from the diagram that the
following relation must hold

ana = MY L‘_;_fi

where b, is the magnification of the image in the U direction. If
the focal fength is known, the scale factor

Hw = ug

"7 ftana

or if the seale factor is known,
"y = o
botana’
The compntation of k, . the V-component of the scale factor, is
identical. Neither ky nor &, can be determined individually with-
ont know ledgze of the foeal length, but their ratio can be caleulated
from quantities derived from the matrix:
k., m-up , vp—vg (uy —ug)tana,
k,  ftane,’ ftana, (v - vo) tanay

3.5 Rotation within the Image Plane

We now return to the derivation of ¢, the rotation of the cam-
era ahout the 1" axis. This rotation is equivalent to cropping the
image at an angle to the UV coordinate system. The value of ¢ is
found by choosing a world point and comparing its transformation
undee two different situations, as illustrated in Figure 7.

First. use the coordinates of L computed earlier and an arbi-
trary focal length to reconstruct the transiation matrix T. Use

IMAGE
PLANE

FIGURE 7 DETERMINING THE ROTATION WITHIN THE IMAGE PLANE

the values of 8 and 6 to reconstruct R, and R and use the chosen
focal length to construct a perspective projection matrix P'. This
comprises a model My = TR, R, [, which can be employed to
compute the transformation of an arhitrary world point. Call the
resulting point py.

Next, use the previously determined piercing point to recon-
struct the matrix €. Then undo the effects of cropping from the
camera model by multiplying the original camera transformation
matrix by ¢~ to obtain

M = MC™' =TRPSCC™! = TRPS.

Now the effectx of unbalanced scaling will be eliminated. Use the
relative seale factor computed carlier to construct a scale trans-
formation matrix:

1 00
g=|0 00
00 1t1o
00 01

Then multiply M’ by S 1o obtain

Mz = M'S'=TRPSS' =TRPS",

where
ke 0 0 0
0 k, 00
S“ = g.-l = u
=l o 1o
0 0 01

Finally, use Mz to compute the transformation of the previously
chosen world point and call the result p..

The angle ¢ can now be determined by making use of Equation
I and the following obscrvation. The only differences between MM,
and A2 are their focal lengthe, a scale factor, and a rotation
about the 1V axis. Although the scale factor is unknown, it is
equal in the U and V" directions because this was compensated
for in computing 2. Together the scale factor and focal length
differences serve only to change the size of the image and impose
no other distortions. Observe that p, is the image point that
would be obtained if there were no rotation about the IV axis,
no sealing of the image. and no cropping of the image. Similarly.
p2 ix the image point that ix obtained by starting with the true
image point associated with the chosen object point and undoing
the effects of cropping and unbalanced sealing.  Any difference
hetween py and pa must be the result of differentesized images
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ur of rotation abont the 1§ axis. Since this rotation is centered
about the origin of this coordinate space, the angle v can be
determined by measuring the angle between py and p: at the
orizin.  The differing focal lengths and scale factors can affect
only the distanee of the points from the origin and cannot alter
the angle hetween the points when measured from the origin.

4 Discussion

The method presented here provides a straightforward way of
determining the parameters of the imaging process from a homo-
senvons coordinate transformation matrix. The geometric inter-
pretation provides some insight into what the equations mean and
when they may fail. The appendix illusteates application of the
technique to several setx of real data.

Iu peactice, we must be coneerned with the robustness of such
an alzorithm and how it is affected by errors in the data. For
example, if [ or & are very large, the view angle subtended by
the image is small and the projection is nearly orthogonal. In this
ease, the method becomes sensitive to the precision of the ma-
trix. and only the camera’s oricntation can be ascertained with
confidence, This property is intrinsic in the problem formulation,
add any method that derives camera parameters from the corre-
spondence hetween image and world coordinates is subject to this
sensitivity. The parameters computed by the methods outlined in
this paper can be used to reconstruct the camera transformation
matrix (within a choice of focal fength) when synthetic data are
used. When empirical data are used, as in the appendix, instabil-
ities in the matrix often make it impossible to reconstruct it with
accuracy.

The camera model used throughout this paper is somewhat
simplificd. The image plane has been assumed to be perpendicu-
lar 10 1he principal ray and the image axes are assumed to be per-
pendienlar, Furthermore, the effects of a non-ideal lens and other
nenisotropie distortions have been ignored. The accuracy of the
decomposition will degrade if these assumptions are not valid.
While we do not expeet this technique to be any more robust
than that of Ganapathy. we do feel that its geometric interpreta-
tion provides nseful clues as to when it will be dependable. The
method™s utility has been demonstrated on actual photographs
and beeause it i non-iterative, the computational burden is in-
~tenificant.
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A Examples

We now present two examples to illustrate our technique.

A.1 Imagery from Robotics Applications

Ganapathy used the following experimentally determined 3 x
4 matrix to demonstrate his method {4).

-2.23819 0.49648 -~.039462 847.40
=.013897 —.062872 —-2.4071 882.91
—-.00026388 ~.00062759 -.000071843 1.0

This matrix is used to obtain the image coordinates (us.vs,s)
by premultiplying the world coordinates, (rt, yt, :t,t), by the ma-
trix. To make it compatible with the notation used throughout
this paper, it must be transposed and an arbitrary column vector
inserted. This column is the one that determines w and does not
afleet the imaging process. The matrix, suitably rewritten, is

=2.3819  —.013R97 0.0 -.00026388
0.49648 -.0628%2 0.0 -.00062759

—.039162 -2.1071 1.0 -.000071843
817.40 8291 0.0 1.0

.\I] =

Prom this mateix the following values were obtained by the
method presented in Section 3.
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L = (620.51. 1295.68,321.61)

This agrees closely with Ganapathy's determination of the cam-

era’s location:
(620.9344, 1295176, 321.8140)

The orientation, of the camera is computed from the normal to

the image plane:
i = (—.3835, = 9167, ~.1049)

This vields (in degrees)

0=157.1919 ¢ = =6.0239 ¢ = 359.909
in agreement with Ganapathy’s results:

0 = 157.1951 ¢ = -6.023012 ¢ = 359.6915

Other parameters obtained from Ay include
prercing poml: (wo, vo) = (682, 478) in pixels
Jocal length: [ -k, = 3188

[k, =3185
relutsve scale factor: ky/k, = 1.0009

A.2 Outdoor Imagery

Figure 8 shows a photograph taken from a book of pictures
of San Francisco [2]. It was necessary to determine the imaging
weometry in order to use the picture for work in image understand-
inz. Ground truth data were obtained manually from a map of
the city. A total of fifteen pairs of image and world coordinates
were 1 to obtain the following camera transformation matrix
with a least-squares program:

A72137 131132 0.0 000346452
Ve = -.15879 112747 0.0 000311253
- 0187902 291101 1.27976 .0000656643

271.943 258,686 0.0 1.0

The results computed from this image are plotted on the map
in Fizure 9 and described further below. The camera location
was computed to be near the intersection of California and Mason
Streets at an elevation of 435 feet above sea level. The camera
was oriented as shown on the map, at an angle of 8% above the
horizon. Compntation of the picreing point is sensitive to errors in
the matrix beeause the projection is nearly orthographic. but the
loeation derived is marked by the point P in the image in Figure
R. The focal length and seale factor relations were computed to
he f-k, = 195 and [k, = 560, indicating an aspect ratio of
k. k, = .88

Fignres 10 and 11 show the results for another photograph
of San Francisco. The camera transformation matrix computed
from 16 points of ground truth data is shown here:

—.175451 0269801 0.0 000151628

\ly -.105205 =.0963531 0.0 -.00016085
0013556 .23031 1.07834 .0000159749
207 836 219.574 0.0 1.0

FIGURE 8 PHOTOGRAPH OF SAN FRANCISCO

PRINCIPAL
L A RAY

FIGURE 9 MAP OF SAN FRANCISCO

The elevation of the camera was found to be 1200 feet above
sca level and the inclination was 4° above the horizon. The hor-
izontal location and orientation are plotted in Figure 11. The
piercing point was unreliably computed to be at the point P
in Figure 10. The focal length and scale factor relations were
f-ky = BTG and f -k, = 999, implying an aspect ratio of
ky/k, = .88.
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FIGURE 10 ANOTHER PHOTOGRAPH OF SAN FRANCISCO
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Description of SRI’s Baseline Stereo System

Marsha Jo Hannah
Artificial Intelligence Center, SRI International
333 Ravenswood Ave, Menlo Park, CA 94025

Abstract

We are implementing a baseline system for automated area-based stereo compilation. This
system, STSYS, operates in several passes over the data, during which it iteratively builds,
checks, and refines its model of the 3-dimensional world, as represented by a pair of images. In
this paper, we describe the components of STSYS and give examples of the results it produces.
We find that these results agree reasonably well with those produced on the interactive DIMP
system at ETL, the best available benchmark.

Introduction

Automatic techniques for the production of 3-dimensional data via stereo compilation are
receiving increased interest for a variety of applications, including cartography [Panton, 1978|,
autonomous vehicle navigation (Hannah, 1980], and industrial automation [Nishihara & Poggio,
1983]. Conventional stereo compilation techniques, which are based on area correlation, can
produce incorrect results under a variety of conditions, for example, when views are widely
separated in space or time, in the vicinity of partial occlusions, in featureless or noisy areas, and
in the presence of repeated patterns.

We are investigating ways to overcome these inadequacies. Our research strategy is first to
implement a baseline system that performs conventional stereo compilation, then to replace pieces
of the system with improved modules as we develop them. Thus, our baseline system will be the
core of an ever-improving stereo system. We also intend to test the baseline system against a
‘“challenge data base" of image areas where conventional stereo techniques fail.

As currently implemented, our system includes routines to perform the following operations
automatically:

+ Select “interesting’’ points for sparse matching
* Search 2D regions for sparse matches

+ [f necessary for uncalibrated imagery, compute relative camera parameters from sparse
matches

s Compute epipolar lines

* Locate epipolar matches, using disparity estimates from sparse matches when available
* Evaluate matched points for local consistency and believability

+ Interpolate between matched points

*+ Display images and results in left-right stereo, red-green stereo, or as a monocular disparity
field :

» Compute range data and x-y-z coordinates for matched point pairs
» Display terrain data in perspective with hidden lines removed.

We are currently exploring improved techniques for image matching, for match evaluation, and
for terrain surface interpolation.
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The Stereo System

Over the past several months, SRI has integrated existing pieces of stereo code into a
baseline system for automated area-based stereo compilation. The system operates in several
passes over the data, during which it iteratively builds, checks, and refines its model of the 3-
dimensional world represented by a pair of images.

The driving program is called STSYS (STereo SYStem). It invokes a variety of modules to
perform the necessary processing for stereo compilation. In theory, the modules are independent
and can be replaced with improved versions at will; in practice, there are some unavoidable
interdependencies of global variables that will have to be attended to.

The following sections describe the components of STSYS in the order they are normally
invoked; examples of their results are included. Comments are also made as to improvements
that could be made to each of the modules.

REDUCE

The basis for the image matching techniques is a hierarchy of images, as shown in Figure 1.
REDUCE is the module that forms this hierarchy from the original images. In the example used b
for the figures, the original images are a pair of image “chips” digitized from standard 9”x9” RO
mapping photos taken over Phoenix South Mountain Park, near Guadalupe (a suburb of R 4‘

j
{

Phoenix), Arizona. These images are 2048x2048 pixels in size, and cover an area that is
approximately 2 kilometers square on the ground; elevations in the area range from 360 to 540 : ERIRIER
meters. The reduction hierarchy consists of a pyramid of images, each at half of the resolution of i —
its parent; in this case REDUCE produces pairs of images that are 1024x1024, 512x512, 256x256, .-w t'j‘"—- vl
128x128, 64x64, 32x32, and 16x16 pixels in size. (Figure 1 shows only the 256x258 through 16x16 : AT
image pairs.)

At present, REDUCE produces pixels in each reduced image by simple averaging of the
pixels in an NxN squsre in the next-largest image (in the above case, N=2). It is known that this

technique can produce artifacts in the data, and a more sophisticated technique of convolving the s
image with a Gaussian, then sub-sampling, is preferred [Burt, 1980]. Substitution of this l....w.....,_v..‘
technique will be one of the first enhancements made to STSYS. © o

INTEREST Lo

The first step in the matching process is to procure a set of well-scatteied, reliable matches ' ' Ry
in the image. Our approach is first to select areas in one image that contain sufficient
information to produce reliable matches. To accomplish this, a statistical operator based on
image variance and edge directionality is passed over the image; local peaks in the output of this
operator are recorded as the preferred places to attempt the matching process.

Historically, such operators have been called interest operators, and the peaks in the
operator output have been called interesting points [Moravee, 1980]. This nomenclature is
somewhat misleading, as the points selected are rarely interesting to a human observer; however,
these terms have been in use in the computer vision community for over 10 years. It should be
noted that present interest operators are not feature detectors; the same operator run over both
images of a stereo pair will not necessarily pick out the same points in the two images. In our
system, the interest operator is run in only one of the images, where it selects points that are to
be matched in the second image by other means. (A possible enhancement to STSYS would be to
design and implement efficient interest operators that really do choose ‘‘interesting points,” such
as crossroads, building corners, sharp bends in rivers, etc.)

INTEREST permits the user to specify the operator to be used [Hannah, 1980], the window
size over which it is calculated, and the window radius for testing local peaks. It also provides
the capability to divide the image into a grid of subimages, and records the relative ranks of the
interesting points within their grid cells; this permits the most interesting point(s) for each area to
be matched first. Figure 2 shows the interesting points for the right image of the Phoenix pair;
the numbers indicate the Ist, 2nd, 3rd, and 4th most interesting points in a 6x6 grid of cells.
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Preliminary Matching

At this point in the processing, it is possible to take one of two different approaches to the
matching. If nothing is known regarding the absolute camera positions and orientations (as would
be the case for an amateur, handheld stereo pair), an unstructured hierarchical matching
algorithm is used on the most interesting points. The results of these matches are used in seeking
a solution for a simplistic relative camera model (5 angles describing the relative positions and
orientations of 2 ideal cameras {Hannah, 1974]), which can then be used for the epipolar
constraint in further matching. This approach uses the modules HMATCH and C2MODEL,
described below. On the other hand, if the camera parameters are known (as would be the case
for the highly calibrated cartographic stereo images intended for terrain mapping) matching can
proceed directly with the epipolar constraints, using the module LMATCH.

HMATCH

HMATCH assumes that nothing is known about the relative orientations of the images,
other than that they cover approximately the same area, at about the same scale, with no major L
rotation between the images. It matches each specified point (usually the most interesting point =t
in each grid cell) using an unguided hierarchical matching technique similar to that reported in .~ 9.
(Moravec, 1980]. This technique begins with the point in the largest image (the 2048x2048 right SR '
image of the Phoenix set), traces it back throigh that image's hierarchy (in our example, it
repeatedly halves the co-ordinates of the point) until it reaches an image that is approximately
the size of the correlation window (the 16x16 image for the 11x11 correlation windows that we
used). It then uses a 2-dimensional spiral search, followed by a hill-climbing search for the
maximum of the normalized cross-correlation between the image windows [Quam, 1971]. This
global match is then refined back down the image hierarchy; that is, the disparity at each level
(suitably magnified to account for relative image scales) is used as a starting point for a hill-climb
search at the next level. The correlation window size remains constant at all levels of the
hierarchy, so the match is effectively performed first over the entire image, then over increasingly
local areas of the image. This technique permits the use of the overall image structure to set the
context for a match; the gradually increasing detail in the imagery is then followed down throug’
the hierarchy to the final match.

Figure 3 shows the results of this technique on a point in the Phoenix set. The image
hierarchy is the same as in Figure 1, with the addition of 63x63 image chips covering the matched
area in the 2048x2048, 1024x1024, and 512x512 images; these are shown in the upper right corner
of each hierarchy. The matching began in the right image in the 2048x2048 chip, traced the right
point through the hierarchy (approximately clockwise in the figure) to the 16x16 right image,
matched it to the 16x16 left image, then refined it back through the left image hierarchy until
reaching the left 2048x2048 chip.

It is instructive to look at the correlation coefficients for these matches (see Table 1). In the
smaller images, the correlation is poor, since the window covers a large area of terrain with a
great deal of relief. As the matching moves up the hierarchy, the correlation improves, because
the window now approximates an area at a single elevation. After reaching the 512x512 images,
however, the correlation begins to decline, both in absolute value and with respect to an
autocorrelation-based threshold [Hannah, 1974). This is due to noise in the images; if one
examines the chip from the 2048x2048 left image, one will see several streaks across the image,
representing scratches on the original photograph and/or dropped data in the digitization; close
examination also reveals a grainy noise pattern. Because the degraded correlations will cause
difficulties in determining which matches are the correct ones, our processing has gone only to the
512x512 images. More code will be added to STSYS in order to refine the final matches from this
level down to the original 2048x2048 images.

Figure 4 shows the results of HMATCH on the most interesting point in each grid cell.
Only the points thought to have been matched correctly are shown; those with poor correlation or
whose matches fell outside of the image have been discarded by STSYS.
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F: C2MODEL

E": If no camera calibration information is available, the module C2MODEL calculates a
C: simplistic relative camera model from a set of matched point pairs. This is accomplished by

searching for 5 angles—-the azimuth and elevation of the second camera’s focal point with respect
to the first camera; and pan, tilt, and roll of the second camera’s axes with respect to those of the
first. The object of the search is to minimize the error between the matched point in the second
image and the epipolar line produced when the point in the first image is projected through the
hypothesized cameras. The search proceeds by a linearization of the equations and their analytic
derivatives {Gennery, 1980]. Once a solution is found, the reliability of the matched points is
assessed. Points that appear to contribute too much error to the solution are removed from the
calculation, and the solution is redone. Either this process reaches a successful conclusion when ! i K
: the point set is found to be consistent, or it reports failure if too many of the point pairs are R
= rejected.

The resulting camera model is quite crude, as it must depend on a guess as to the focal
lengths of the cameras and the length of the baseline between the cameras. Also, it assumes that LLorRes
we are using ideal cameras, thus totally ignoring the internal calibration of the cameras. It is, o
however, suitable for approximating the epipolar constraint to simplify further matching. l' . Y.

LMATCH

If the camera parzmeters are given (or once the crude ones have been derived), matching S
can proceed somewhat more efficiently. The camera parameters define the manner in which a ol
point in the first image projects to a line in the second image--the epipolar constraint. This
constraint can be used to cut the search from 2 dimensions (all over the image) to 1 dimension
(back and forth along the epipolar line).

LMATCH proceeds very much like HMATCH, except that the search for a match is
confined to the vicinity of the epipolar line. Because we assume that there is no outside
information to indicate where these preliminary matches lie along the line, we again use the
hierarchical technique to search out and refine the match. If relative camera parameters have
been derived, LMATCH is used on the second most interesting point per grid cell, plus any points
that C2MODEL indicated were unreliable; the results of this mode are shown in Figure 5. If the
true camera parameters have been supplied, LMATCH is used on the two most interesting points
in each grid cell; these results are shown in Figure 6.

Anchored Matching

Once several reliable matches have been found, they can be used as ‘‘anchor’’ points for
further matching. Our basic technique for this again uses the grid cells in the image. A given
point will lie in some grid cell; the closest matched point(s) will lie in that cell or in one of the 8
neighboring cells. Under the assumption that the world is generally continuous, a point would be
expected to have a disparity similar to that of its nearest neighbors. Thus, to approximate the
disparity at a point, we first calculate the average of the disparities of the well-matched points in
the current and neighboring cells, weighted by the inverse of the distance between the current
point and the neighboring point. (As we develop more sophisticated interpolation schemes, this
disparity approximation technique will be upgraded.) This approximate disparity is used along
with the epipolar constraint to perform a very local search for the match to a point. Note that a
point is considered to be well-matched if it has a correlation above a user-settable absolute
threshold, usually 0.5, as well as having a correlation above a variable threshold, based on the
autocorrelation function around the point in the first image (see Table 1 for examples). Our
definition of well-matched should also be upgraded to include distance off of epipolar lines as well
as a measure of how consistent the disparity is with its neighbors.




PMATCH

At this point in our processing, we have matched the two most interesting points in each
grid cell. This is still rather sparse information, so we next invoke the module PMATCH to
match the balance of the interesting points. It uses the anchored match technique described
above, with a generous search radius along the epipolar line, to find these matches. Figure 7
shows the results of this module. Two different marks are used for the matches, denoting whether
their correlations indicate that they are well-matched.

GMATCH

We next produce matched points on a closely spaced grid. The module GMATCH also uses
the anchored match technique, with a somewhat restricted search radius along the epipolar line,
to calculate matches on a user-specified grid. Figure 8 shows the results of this module on a

;: 20x20 grid, again using different marks for the different qualities of match.

; . Terrain Modeling

i Given the dense grid of matched points and the camera calibration, it is possible to derive a
digital terrain model. If external and internal camera information is available, the module

SRIDTM can be used to create a reasonably accurate DTM, which can then be displayed with

another program, DTMICP. (An example of DTMICP output is shown in Figure 9; it can also
- produce range images of the terrain or pictures of the original imagery *‘painted” on the terrain.)
- If the only camera information is C2MODEL's relative model, then the module RELDEPTH can
= be used to create a relative DTM. However, due to the many over-simplifications and the
computational instability of the relative camera model, such relative DTMs are of very low
accuracy, and their use is discouraged.

Often, a terrain model is desired that has its points more closely spaced than that provided
by the stereo matching process. Sometimes, there may be areas of the images that cannot be
matched, due to noise in the data, insufficient information, or changes such as moving vehicles;
this will result in “‘holes” in the grid of terrain data, which must be filled in somehow. In either
case, interpolation of the matched data points is necessary to provide information at other points.
Work on this topic is reported separately [Smith, 1984].

Evaluation

Evaluation of the accuracy of STSYS is difficult, as there do not seem to exist stereo data
sets with knowr ground truth to compare against our results. We do, however, have the results
of an interactive stereo compilation slgorithm called Digital Interactive Mapping Program
(DIMP), produced and operated by the U.S. Army Engineer Topographic Laboratories (ETL)
[Norvelle, 1981]. It should be noted, however, that ETL's results were obtained by an
interactively coached process, which was run on a 5x5 grid in the 2048x2048 images and used
correlation windows warped to account for the local steepness of the terrain, while ours were
obtained by a fully automatic process that ran on a 20x20 grid in the 512x512 images without
warping; comparing them is a little like comparing apples and oranges. (Another planned upgrade
to our matching techniques is the use of warped correlation in the match refining step.)

Of our matches (both interesting points and grid points), approximately 98% agree
reasonably well with the nearby ETL matches at the resolution of the 512x512 images. Of the
remaining 2%, most are clearly blunders on our part, although a few appear to be the result of
errors in the DIMP compilation. It is not known what fraction (if any) of the 98% represent
places where our processing and the DIMP processing produced similar wrong answers.

Discussion

SRI has an operational baseline system for automated area-based stereo compilation. This
system, STSYS, operates in several passes over the data, during which it iteratively builds,
checks, and refines its model of the 3-dimensional world represented by a pair of images. In this

TSR TP R S S Gy S M SO S S WA S WY AP WA Sl Wl S W W W 'V PPV PP




RN T T A TS AP At ST S S A S et LYt i IR anet -y Dl R —— T e
A A AT e N Ty T L I T e e s T s L T T e T e T T T e T e T e L e

paper, we have described the components of STSYS and given examples of the results it produces.
We have compared these results to those produced on the interactive DIMP system at ETL, and
found that they compare favorably.

STSYS is, at present, an experimental program; no attempt has been made to optimize it
for best results or fastest operation. The program is still evolving, and will not be ready for
transfer to other users until its methods stabilize. Likewise, more complete documentation must
wait on completion of the code.
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Figure 3--Hierarchical Match of an Interesting Point.

Table 1--Hierarchical Correlations for Point in Figure 3.

Image size Point 1 Point 2 Correlation Autocorrelation
16x16 (9,11) (9,11) 0.140452 0.577717
32x32 (19,23) (19,23) 0.384883 0.437053
B4x64 (38,46) (37,46) 0.738581 0.738427
3 128x128 (77,92) (76,92) 0.920933 0.885289
| 256x256 (154,184) (153,184) 0.954606 0.918228
! 512x512 (308,369) (306,369) 0.916062 0.929428
K 1024x1024 (616,738) (612,737) 0.750448 0.932947
P 2048x2048 (1232,1476) (1222,1475) 0.341622 0.7680917
1
.
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Figure 4--Results of Unstructured Hierarchical Matching of
Most Interesting Point in Each Grid Cell.
Most Interesting Point in Each Grid Cell

Figure 5--Results of Epipolar Hierarchical Matching of Sect
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Figure 6--Results of Epipolar Hierarchical Matching of Two
Most Interesting Point in Each Grid Cell.

Figure 7—-Results of Anchored Epipolar Matching of Remaining
Interesting Points
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Figure 8-Results of Anchored Epipolar Matching of a Grid
of Points.

Figure 9--A View of the Resulting Digital Terrain Model
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A Fast Surface Interpolation Technique
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. A Fast Surface Interpolation Technique.
I Grahame B. Smith
N
:; Artificial Intelligence Center, SRI International
% Menlo Park, California 94025
Abstract

A method for uierpolating a sarface through 3-D data is
presented. The method is computationally efficient and general
enough to allow the construction of surfaces with either smooth
or rough texture.

1. Introduction

In image analysis we are often faced with the fact that the
measurcments we make in an image only constrain properties of
the 3-D world, instead of specilying them. Analysis techniques
that recover 3-D shape information from image measurements
incorporate very restrictive assumptions sbout the nature of the
world. In our attempts to avoid the need for these restrictions,
we have been examining hypothesis-and-test methods. If we
assume that we are able to obtain some shape dats, from which
we can hypothesize an approximate shape model for the world,
then we can use this model to predict image features. To proceed
from shape data to an approximate shape model we need to “flesh
oul” the data. In this paper we address the problem of fitting »
surface to a set of points whose 3-D locations are known., While
our interest centers on ftting & surface to 3-D location data that
bave been acquired by processing images of that surface, the
teehnique developed has application to a broad class of surface-
fitting tasks.

To select a surface-fitting procedure, it is insuflicient merely
to know the data set and to require that a surface be fitted to the
points in that set. We also need to know the desired properties of
the surface, the characteristics of the data, and the uses to which
the fitted surface will be put. If we are building a surface to
allow, say, water runoff estimates to be mnde, smoothness may
be a desired property for that surface. For realistic rendering
of 3 natural surface in computer graphics, however, a fractal
surface may be preferable. While the techniqne we develop
can construct either smooth or rough surfaces, our applications
generally require the former. Our examples, Figures 3 and 4,
show both types.

Besides the desired properties of the fitted surface, the
characteristics of the data limit the approach we must adopt
to surface construction. In ftting & surface we must balance the

The research reported herein was enpported by the Defensn Advanced
Research Projects Agency under Contract MDAPO3-83-C-0027 and by the
Nationsl Aeronanties and Space Administration under Contract NASA
9-16604. These contracte are monitorad hy the US. Army Fngineer
Topographie Laboratory and by the Texas AZM Research Foundation for
the Lyndon B. Johnson Space Center.

influence exerted by the data values themselves, against that
exerted by the implicit surface model embedded in any ftting
procedure. If our data values are inaccurate and we know the
class of surfaces that should fit the data, we can usually let the
surface model dominate the construction process. Least-square
methods are typical of procedures that prefer a model to data. o
general, techniques whose resultant surfaces do not conform ex-
actly to the data are known as approximation methods. Methods
that produce surfaces conforming exactly to the data are called
interpolation methods.

The selection of an approximation or interpolation method
influenced by properties of the data other than their accuracy.
Consider, for example, the terrain data collected by a surveyor.
In sclecting the places at which to make measurements, he con-
siders the breakpoints of the surface - that is, those places on
the surface where the gradient is discontinuous - and his data
include measurements at these breakpoints. Surface reconstruc-
tion by linear interpolation over triangular surface patches is
possible because the surveyor has furnished not only the 3-D
data, but also an implicit statement that the surface between
his points can be approximated by planar patches. In match-
ing stereo pairs of images, an edge-based matcher provides more
than the 3-D data it produces. Like a surveyor's data, it too
makes an implicit statement about the continuity of the imaged
surfaces. On the other hand, an area-based correlation matcher
says less about surface continuity, but has the desirable behavior
of providing regularly spaced data.

Such data can usually be processed with considerably less
computational effort than data that are irregularly spaced. The
volume of data, the regularity of their spacing, the implicit
characteristics of their collection procedure, and their accuracy
are all essential parameters in selecting a surface-fitting tech-
nique. For our applications we choose to investigate interpola-
tion methods. We want methods that will work with irregularly
spaced data, but still achieve substantial computational savings
if we can use a regular grid of data points. We need to be able
to handle thousands of such points. As a rule, we do not want to
use implicit properties of the data that stem from their collection
procedure.

The uses to which the fitted surface will be put further
restricts the set of applicable surface-fitting procecurcs, If the
task at band is surface arca estimation, the accurncy of the
surface gradients is not important. Conversely, if we wish to
use the fitted surface to generate the latter’s image under some
known lighting conditions, the surface gradient information then
becomes crucial. We ean classily the uses of fitied surlaces hy
the surface derivatives that are needed. An application that does




aot require surface derivatives to be calculated can usually be
satisified by a surface composed of local patches. That is, the
surface is fitted locally patch by patch, with each patch deter-
mined by a small number of local data points. Such methods
have strong surface models and few data are needed to instan-
tiate them. As a consequence, however, the surface derivatives
are more a function of the surface model than of the data. The
amount of data used to determine the surface patch may be
barely sufficient to calculate an average value for the surface
derivatives across the whole patch; besides, any variati in
derivatives across the patch are caused by the model, not the
data. The more data employed, the less is the influence of the
surface model on the caleulation of surface derivatives. In the
extreme case, all the data may be used to determine the sur-
face to be fitted at each locality. Such techniques are called
global methods, whereas those that use only local data are lo-
cal methods. Our applications require that we calculate surface
curvature from our fitted surface. The technique we present here
is a global method for surface ftting.

13 summary, we address the problem of fitting a surface to a
targe data sct composed mostly of regularly spaced data points,
but which also includes grid points at which we have no data,
and non grid points where data values are known. The data are
acquired through a collection process that is assumed to yield
accurate values, but for which we choose not to characterize the
data further. We require a solution that is smooth and from
which we can calculate the Brst and second surface derivatives.
We present details of a global interpolation method that is com-
putationally efficient and appears lo applicable to a broad range
of tasks. Although the general form of the method applies to
non gridded data our computationally efficient algorithm comes
from exploiting the regularity of the data points.

We commence by considering the multiquadric method in-
vented by Hardy (1] for modeling natural terrain. In its general-
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the cone's apex is in the z == 0 plane. That is, the data are
fitted with a set of cones, some of which are inverted. The 2
value of the coustructed surlace at position (z,y) is calculated
by summing the z values contributed by each of the n cones at
this (z,y) position.

Each cone has one free parameter, namely, its apex angle;
we determine these apex angles by requiring that the constructed
surface pass exactly through the data points. In the foregoing
expression, the ¢;'s correspond to the apex angles of the conex.
We calculate the ¢;'s by solving the nxn system of lincar equa-
tions

E;:;c,[d,’.(z‘,w) +A =z i=0,.,n-1

Note that this fitting technique does not require that the
data be regularly spaced; furthermore, when k £ 0, hyper-
boloids rather than cones are fitted to the data. Cones and
byperboloids are not the only options. Stead [2], for example,
has generalized this method, using the form

Az, ) = T gesldiz.v) + hE

2.2 General Form

We examine surface-fitting techniques that use the general
form of the above method, namely,

Hz,y) = E;::,C:'l(z —zpy—v)

where the kernel function g is any function of the parameters
z ~ zj,y — yj. Clearly, the previously defined functions are
particular cases of this form. As before, we determine the ¢;'s
by solving the nxn system of linear equations

-1 .
E;_oqg(z‘ -z, -y = i=0,.,n-1

For large values of n it is not feasible to solve this system

ized form, we examine it under the restriction of regularly spaced
data points and derive an algorithm to solve for the unknown
parameters. We show how to generate the interpolated surface
in an eficient manner.

2. Surface Interpolation

2.1 Hyperbolic Multiquadries

Suppose we have a set of data points, [(z/, yi, £:)]7=d in 3-D
space to which we wish to fit & hyperbolic muitiquadric surface
(1] defined by

sa9) = Ticeldizm+ At

where d?(z.y) = (z — ;)% + (y — y;)%, A is & user-specified
constant, and ¢;'s are the coefficients that must be determined.

To understand this method, let us suppose that k == 0. The
data are fitted by placing a cone at ench of the n data points
so that the cone's axis is aligned with the s axis direction and

1Y

of equations. Tn our applications n may be 10,000. However,
for smaller n we have used the ahove form to “patch” holes in
a regular grid of data points. While any kernel function ean be
employed, we have found it important to match the method need
to solve the nxn system of linear equations to the form of the
kernel function selected. The numerical dificulties encountered
in solving some of the systems of equations produced by a par-
ticular kernal can often be averted by exploiting properties of
the linear system stemming from the choice of kernel function.
For example, if we use the Gaussian function as the kernel, the
symmetric positive definite coeficient matrix of the system of
linear equations allows solution by the “square-root” method
(see, for example (3]), and avoids the numerical problems created
by Gaussian elimination. If we impose the restriction that the
data points must be gridded, we ean find feasible solution tech-
niques even when n is of the order of millions.

2.3 Regular Grid Solution

Consider the problem of fitting the surface

Hz,y) = ,_,E;:,'tuﬂ(! =2p¥=vig) (1)
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whese (2 j. i j)|7mo.jeg is a0 nxm regular grid, to the data sct

Wzigo i = ,)],:.', ;":J We can find an expression for calculat-
ing the ¢¢;'s in the following manner.

L.et G{u,v) denote the discrete Fourier transform (DFT) of
g(7,y). Using the shift theorem of DFT theory, we note that the
DFT of g{z — 24, ¥ — ¥i.z) is Glu, v)e=274R3i+230) 1f Z(u,v)
denotes the DFT of 2{7,y), we can write the DFT of Equation
(1), namely,

u-s 'nn,
Z(uy, hl'kl)=z‘_° J-o“vJG("* 1 Yk, N —2ni( =Ty )
ke=0,..,n-1
{=0,.,m-1.

Removing G(uy g, vs,1) from the summation, we have
om0 1-0 G(“l.b”..l)

Taking the inverse DFT of the above expression, we obtain

n-1 n—1
tm0Laim0 Lsim 1-0“"

_2 ‘('Ntnj'uwi) 2r ‘('N'-c 'N'vc)

Zm—lZ(u. Y 2"(-.l'r'+‘t.,u )
k=0Lal=m0 Guy, h"l.l)

Using F~! to represent the inverse DFT, F-'I%i:ﬁ“(’v-t' Vo)
is the inverse DFT of éf%‘%, calculated at (zp,q,¢p,¢). We have

’"('n m;+'n_m_1)
Z.-o j-o "’Zi—ﬂ l-o

’.‘( b2 l'r 0+ 'l.l:v.t) -

-llg::, :;l(’r.n Ur.e)

Now if z;; = z, 4, and y; 5 == yp,,

k uz:' o 2"('1 A®45 +'i.:i.i)¢”“ 'I.':I.l+'h KL c) - nm

otherwise
=0
Hence
Z|
== -'IG::' ,l(h,.ﬂu) . (2)

An alternate way of viewing the above derivation is to note
that g(zp,4 ~ 245, ¥p,¢ = ¥4,5) forms a circulant matrix, and to
recall that such matrices are diagonalized by the discrete Fourier
transform [4].

2.4 Surface Rendering

Once the ¢; 4's have been ealenlated, Equation (1) provides
an analytic expression for the constructed surface. We ean cal-
culate z(z,y) lor any (z,y) position, However, each such caleula-
tion involves the sum of nm terms. If it is our intention to use

this analytic expression for surface interpolation we may have
to calculate this sum a very large number of times. The cost
savings gained in computing the ¢4 ; cocflicients by means of the
DFT (implemented by the fast Fourier transform) will he offset
by the cost of these summations. As a rule, il we commence
with data on a regular grid we want an interpolated surface on a
Biner grid. This results in considerable savings which are realized
when the DFT is again employed.

Suppose we want to interpolate each grid interval in 2 and
¥ at an additional number of points so that the final surface is
calculated on a rnxam grid. Consider Equation (1), revised for
the pew, larger grid:

ra—1 m=1 ,

ALY =) g 2ojmo Chs8(E=Ziss¥=0i5) 3

where

C:'_’- =ECigr. 4o i(mod r) =0, (mod 8) =0,
=) otherwise.

That is, we assume the surface is constructed by the placing
of ohjects at each of the new grid points, but zero coefficients
are associated with all objects except those placed at the original
data points. Now, taking the DFT of Equation (3), we get

ra=-1

Z(upp, vy ,g) = im0 l-"

4.;0 (10,0, Un ).

"%, WXL
il e 200

Jor k=0,.,rm-1
lm=0,..,0m=-1,

ie.,
Z(6a,1, Ur,t) = G'(up g, v )C (n g, 0a0)

where G'(u,v) is the DFT of g(z,y), defined on the finer grid,
aad C’(u, v} is the DFT of the array ¢}, ’

The interpolated surface can be formed by taking the in-
verse DFT of the above expression:

2Zi5,9i,7) = F ' [G'(un 0, 00,0)C (0144, v )]

Note that, in finding the ¢ ;'s in Equation (2), we took the
inverse DFT of é{:’;{ , then stretched these ¢ ;'s by adding reros
at the points corresponding to the new interpolation points, and
finally took the DFT of the stretched coeflicients to ealculate
C’(u, v). These steps are in Inct unnecessary, for we can ealenlate
the C'(u, v)'s directly from the ai —!'s. The similarity thereom
of DFT theory [5] is required:

. 1 Z(uny (mod n), va,i (mod m))
Cluns, vag) = e G(u“ (mod ni ;;_a (mod Tn)) Q)
k=0, .. rn—-1

{=0,..,em—1.

2.6 Algorithm

We can now write down our interpolation algorithm:




1. Given the data array 2(zi4, ¥is), Gnd its DFT, Z(u¢4,ve,5)
2. Find the DFT, G(u; 5, v¢ 7), of the kernel function, gz 5, ¥i.5)
3. C(vi 4, viz) = 5{%:‘:-:%:"}

4. Calculate C'(uy 4, v;,4), using Equation (4)

§. Calculate G'(uy,4, vi,5) for the larger interpolation grid

6. Z'(u;j,vi4) = C'(U;J, WJ)G'(H;J, vig)

7. Find the interpolated surface by taking the inverse DFT of
Z'(uy4ivi )

Note that for selected kernel functions Steps 2 and § could
be precomputed for standard-size grids. As an alternative, these
steps can somctimes be accomplished by analytic means if the
analytic form of the kernel function is known.

3. Discussion

For purposes of illustration, let us compare the computs-
tional efficiency of this method on a regular grid with the cost
of the usual non gridded formulation of the muitiquadric. Of
course, since the usual formulation deals with irregularly spaced
data, we would not expect it to compare favorably with this
method; such a comparison nevertheless confirms the advantages
of our technique. Consider a square nxn grid of data points on
which we want an interpolated surface over a rnxrn grid. The
usual multiquadric formulation solves a n?xn? system of linear
equation at a cost proportional to n®, and calculates rnxrn sums
of terms at a cost proportional to r2n?. If it is assumed that
n > r, this cost is dominated by the n® term.

The algorithm outlined above is dominated by the cost of
the DFTs in Steps 5 and 7. We use the fast Fourier transform to
implement the DFT. This means that we pad our data with zeros
to force the dimension size of the grid to be a power of 2. At
worst, our grid is 2rnx2rn. The cost of the DFT is proportional
to 4r2nZlog2rn. Even if r were as great as n, this cost would be
proportional only to n*logn. From an empirical standpoint, the
algoritbm outlined is faster for n (and k) of the order of 10.

The outlined algorithm places little limitation on the type
of kernel function employed. Not only smooth, but also rough
functions may comprise the basic ohjects from which the sur-
face is built. We have used, inter alin, cones, hyperboloids,
and Ganssian-shaped objects, some of which had fractal texture
added to them. In Figures 1-4 we show profile plota. Figure 1
shows a real surface, Figure 2 the sampling grid we used to select
data points. In Figure 2 the profiles depiet what wonld have
been obtained if we had used bilinear interpolation to build the
surface. Figure 3 reveals the resultant surface when Gaussian
kernel functions were used, while Figure 4 wne obtained with
a kernel function that had fractal texture added to a Gaussian
base. When we compare the fitted surface to ground truth, the
average error for the smooth kernel functions used by us, is ap-
proximately one percent of the data height range. As with any
fitting technique, we cannot construct surface features that are
not described by the sampled data.

We indicated that one reason for investigating global sur-
face interpolation techniques was the need to ealenlate relinble
estimates of surface curvature. In our preliminary trials with

" » dear e sash Lagh aau st el SRR A

synthetic surface data the constructed surface appears to allow
adequate surface curvature estimation. This will be tested fur-
ther in future applications.

4, Conclusions

We have presented a method of surface interpolation that
is computationally efficient. The reconstructed surface is fitted
globally to enable the data rather than an implicit surface model
to control the construction process. The method makes it pos-
sible to build not only the more customary smooth interpolated
surface, but the roughly textured type as well.

Surface reconstruction methods provide a means of us-
ing the hypothesis-and-test approach in image analysis. They
provide a mechanism for using image information that only con-
strains rather than specifies 3-D world parameters. The outlined
algorithm is a tool for hypothesizing a broad range of surface
types.
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Figure 3.

Real Surface Used as Ground Truth

Data Sampled at Grid Intersections

Figure 8. Reconstructed Surface by Means of Gaussian
Kernel Functions.

Figure 4. Reconstructed Surface by Means of Frac
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Abstract

This paper describes a new technique for use in the auto-
matic production of digital terrsin models from stereo pairs of
aerial images. This technique employs s coarse-to-fine hierarchi-
cal control structure both for global constraint propagation and
for efficiency. By the use of disparity estimates from coarser lev-
els of the hierarchy, one of the images is geometrically warped to
improve the performance of the cross-correlation-based match-
ing operator. A newly developed surface interpolation algorithm
is used to fll holes wherever the matching operator fails. Ex-
perimental results for the Phoenix Mountain Park data set are
presented and compared with those obtained by ETL.

1 Introduction

The primary objective of this research was to explore new
approaches to automated stereo compilation for producing digi-
tal terrain models from stereo pairs of aerial images. This paper
presents an overview of the hierarchical warp stereo (HWS) ap-
proach , and shows experimental results when it is applied to the
ETL Phoenix Mountain Park data set.

The stereo images are assumed to be typical aerial-mapping
pairs, such as those used by USGS and DMA. Such pairs of im-
ages are different perspective views of a 3-D surface acquired at
approximately the same time and illumination angles. Normally
these views are taken with the camera looking straight downward.
The major effect of non verticality is to increase the incidence of
occlusion, which increases the difficulty of point correspondence.

We shall call one of these images the “reference image,” and
the other the “target image.” We will be searching in the target
image for the point that best matches s specified point in the
reference image.

It is also assumed that the epipolar model for the stereo pair
is known, which means that for any given point in one image
we can determine a line segment in the other image that must
contain the point, unless it is occluded from view by other points
on the 3-D surface. This is certainly a reasonable assumption,
since an approximation to the epipolar model can be derived
from a relatively small number of point correspondences if the
parameters of the imaging platform are not known a priort.

The primary goal is to automatically determine correspon-
dences between points in the two images, subject to the following
criteria:

This research was supported by the Defense Advanced Research Projects
Agency under Contract No, MDA 903-83-C-0027.

o Minimige the rms difference between the disparity mes-
surements and “ground truth.” Without ground truth, we
cannot measure this.

o Maximise the sensitivity of the disparity measurements to
small-scale terrain features, while minimising the effects of
noise.

o Minimise the frequency of false matches.
o Minimise the frequency of match failures.

These criteria are mutually exclusive. Under ideal conditions,
increasing the sise of the match operator decreases the effects
of noise on the disparity measurement, but it also diminishes
sensitivity to amall terrain features. Similarly, tightening the
match acceptance criteris reduces the frequency of false matches,
but results in more frequent match failures.

One of the goals of this system is to minimize the number
of parameters that must be adjusted individually for each stereo
pair to get optimum performance.

2 Approach

This section briefly explains the HWS approach, which con-
sists of three major components:

o Coarse-to-fine hierarchical control structure for global con-
straint propagation as well as for efficiency.

o Disparity surface interpolation to fill holes wherever the
matching operator fails.

o Geometric warping of the target image by using disparity
estimates from coarser levels of the hierarchy to improve the
performance of the cross-correlation-based matching oper-
ator.

2.1 The Use of Hierarchy and Surface Interpola-
tion to Propagate Global Constraints

The goal of stereo correspondence is to find the point in the
target image that corresponds to the same 3-D surface point as
a given point in the reference image. It is often impossible to
select the correct match point with only the image information
that is local to the given point in the reference image in combina~
tion with the image nformation along the epipolar line segment
in the target image. When the 3-D surface contains a replicated
pattern, there is the likelihood of match point ambiguity. Let us
consider, for example, a stereo pair that contains a parking lot




with repetitive markings delimiting the parking spaces. Around
the edges of the lot there are image points that can be matched
unambiguously. Within the parking lot, ambiguity is likely, de-
pending on the orientation of the repetititive patterns with the
epipolar line. A successful stereo correspondence system must be
able to use global match information to resolve local match-point
ambiguity. )

HWS approsches this problem in two ways. First, global
constraints on matches are propagated by the coarse-to-fine pro-
gression of the matching process. Disparities computed at lower
resolution are employed to constrain the search in the target im-
age to s small region of the epipolar line, which also greatly
reduces the probability of selecting the wrong point when am-
biguity is present. Second, whenever the match process fails to
find a suitable match or detects a possible match ambiguity, o
disparity estimate is inserted that is based on a surface interpo-
fation algorithm, which uses information from a neighborhood
around the disparity “hole,” with the sise of the neighborhood
depending on the number of neighboring “holes.”

2.3 The Use of Image Warping to Improve Corre-
lation Operator Performance

One of the greatest problems in the use of ares correlation for
match point determination is the distortion that occurs because
of disparity changes within the correlation window. Since area-
based correlation matches areas, rather than individual points,
the disparity it calculates is influenced by the disparities of all of
the points in the window, not just the point at the center. When
there are high disparity gradients or disparity discontinuities, the
correlation calculated for the correct disparity can actually be so
poor that some other disparity will have a higher correlation
score.

The effect of correlation window distortion can be greatly
mitigated in & hierarchical system by using the disparity esti-
mates from the previous level of matching to warp the target
image geometrically at its current resolution level into clc -r cor-
respondence with the reference image.

2.3 Related Work

Norvelle {1] implemented & semi automatic stereo compila-
tion system at the U.S. Army Engineer Topographic Laboratories
(ETL) that operates in s single pass through the images. It uses
disparity surface extrapolation both to predict the region of the
epipolar segment for matching and to estimate the local surface
orientation 50 as to warp the correlation window. He found that
these techniques improved the performance of the system sig-
nificantly, but that considerable manual intervention was needed
when the surface extrapolator made bad predictions, or when the
image contained areas with no information for matching, with
smbiguities, or with occlusions.

3 Sequence Of Operations In Hierarchical
Warp Stereo

Figure 1 illustrates the hierarchical control structure of the
system.

TARGETY
AEFERENCE
mAGE DISPARITIES 1D} maGe

REBIVOAL
DIgrARITIES (D)

RESIDUAL
OupARITIES 11} INTERPOLATE
wATCH race
v ¢
MATCH wan

FIGURE 1
Block Diagram of Hierarchical Control Structure

1. Initialize:

© Start with a stereo pair of images (assumed to be of
the same dimensions).

o Call one of these images the “reference image,” the
other the “target image.”

o Construct Gaussian pyramids (Burt (2]) reference;
and target; for each image. The images at level s in
these pyramids correspond to reductions of the origi-
nal images by a factor of 2°.

® Set disp_; to either the s priori disparity estimates or
all zeros.

o Start the iteration at level § = 0.
e Choose the pyramid depth D so that:

D = ceiling(log2(uncertainfy)) - 1.

where uncertainty is an estimate of the maximum
difference between disp_; and the “true” disparities.
This guarantees the “true” disparitiea will be within
the range (-2 : +2) at level O of the matching.

2. Warp: Use the disparity estimates 2 « diap;_; to warp
targetp_; geometrically into approximate alignment with
referencep_;. Note that the factor of two is equal to the
ratio of image scales between level ¢ and level i ~ 1 of the
hierarchy.

3. Match: Using the matching operator, compute the resid-

ual disparities Adisp; between the warped target and the
reference images at level 1.
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4. Refine: Compute the refined disparity estimates:
dispy = 2 disp;_3 + Adisp;.

5. Fill: Use the surface interpolation algorithm to fll in dis-
parities estimates at positions where matching operator
fails because of no image contrast, ambiguity, etec.

6. Increase resolution: If ¢ = D, quit; otherwise let s =¢ + 1
and go to Step 2.

4 Disparity Estimation
Disparity estimation consista of three parts:

o Computing match operator scores for disparities along an
epipolar segment.

o Accepting or rejecting the collection of scores according to
& model for the shape of the correlation peak.

o Estimating the subpixel disparities at acceptable peaks.

4.1 Match Score Operator

The HWS approach presented here can be implemented with
s variety of match operators. All results reported here were
obtained with an operator that closely approximates Gaussian-
weighted normalized cross correlation. The values of the Gaus-
sian weights decrease with Euclidean distance from the center of
a square correlation window. In the examples shown here, the
window dimension is 13 x 13 pixels with a standard deviation of
approximately 2 pixels in the Gaussian weights. Preliminary re-
sults indicate that the Gaussian-weighted correlation operator is
better than uniformly weighted correlation operators at locating
changes in disparity while maintaining a given level of disparity
precision.

4.2 Evaluation of Correlation Surface Shape

The match operator reports a failure if any of the following
conditions exist:

o Disparity out of range: The maximum match score is found
at either extreme of the epi-polar segment.

e Multiple peaks: The best and next best match scores is
found at disparities that differ by more than one pixel.

There are other models for the expected shape of the corre-
lation surface that can be based on the autocorrelation surface
shape of the windows in the reference and target images. Further
investigation is needed to evaluate the utility of such models for
both surface shape evaluation and disparity estimation.

4.3 Subpixel Disparity Estimation

The subpixel location of the correlation surface peak is esti-
mated by parabolic interpolation of both the x and y directions
of disparity. For each direction, three adjacent match scores —
81, 8, and 8431, where & is the maximum score — are used to
compute the peak as follows:

04y — 8-
Sa 41 = 8i-1
248 — 841 - 8-y

More complicated approaches to peak estimation, such as
two-dimensional least-squares fitting of the correlation surface,
might yield better estimates, but at a higher computational cost.

6 Surface Interpolation Algorithm

The goal of the surface interpolation algorithm is to estimate
values for the disparity surface at points where the match op-
erator reported failure; such points will be called *holes.” The
approach to filling a hole at location z,y is to model the surface
by employing the disparity measurements over the set of non-
holes F in the n x n pixel neighborhood centered at z,y. The
set H contains the indices of all holes in the neighborhood.

This surface interpolstion algorithm is based on the solution
to the hyperbolic multiquadric equations deacribed in Smith (3].
The surface is known at the set of points z;,y;, z; where i € H,
and can be estimated at other points h € H by the formuls

s(zan) = Y ci e g(2n — i un — ),
il
where g is the baasis function for the surface respresentation, and
coeflicients ¢; are the solutions to the set of linear equations:

Hzpy) =Y csglzi—z0-y) foralljeH
el

Clearly, this irregular grid solution could be used to compute
the surface values at the holes in the disparity data, but this
involves solving for the coefficients ¢; for each different configu-
ration of holes and nonholes in the n x n neighborhoods of the
disparity surface.

An alternative approach, which is used here, is to convert the
quasi-regular grid problem into a regular grid problem in which
each ¢; at a hole is forced to be zero, and the corresponding z;
remains as an unknown. This results in the same solution that
would have been obtained from the irregular grid formulation
and produces the following system of linear equations:

Y Alsu==3 AJjes fordlhen, §))
el jelR

where A~! is the inverse of the matrix A;; = g(z:—z;, % —y;)
for+,5 € HUH. This system of equations must be solved for each
%; for i € H. Thus, we have reduced the size of the linear system
of equations that must be solved from the number of elements
in i to the number of elements in H. Of course, the matrix A
must be computed and inverted once.

Areas on the disparity surface that contain large clusters of
holes cause problems. The previous surface interpolation algo-
rithm degenerates to a surface extrapolation algorithm when the
nonholes in the neighborhood are not more or less isotropically
distributed over the entire neighborhood. The problem can be
overcome by increasing the size of the neighborhood until some
spatial-distribution criterion is met, but this would require solv-
ing extremely large linear systems.

Large holes are filled by means of the following hierarchical
approach:

Procedure Surface-Interpolate(surface;)

1. If surface; contains large holes then




(s) Compute filled-surface;y =
ezpand(surface-interpolate(reduce(sur face;))),
where reduce computes a Gaussian convolution reduc-
tion by a factor of two, surface-interpolate is a recur-
sion call to this interpolation algorithm, and ezpand
computes expansion by a factor of two, using bilinear
interpolation.

(b) For each hole in surface; that is completely surrounded
by other holes, fill the hole with the value from the
ﬁ“od-l!ll’fmﬂ.l.

2. For each hole in surface; fill the hole by solving the system
of linear equations (1) for the n x n pixel neighborhood
centered at the hole (n = 7 in the examples).

3. Return the filled surface;.

6 Examples

This section describes the experimental results achieved when
the HWS technique was applied to areas of the ETL Phoenix
Mountain Park data set, and compares these results to those ob-
tained from the semiautomatic system developed by Norvelle [1].

The following components of the Phoenix Mountain Park
data set were used:

o Left image: 2048 x 2048 pixels, 8 bits per pixel
o Right image: 2048 x 2048 pixels, 8 bits per pixel
e x-correspondence array: 400 x 400 points , floating point.

The left and right images had been scanned such that the
epipolar lines were almostly exactly horizontal. The ETL x-
correspondence array was converted to an x-disparity image to
enable comparison between ETL and HWS results.

Results are shown for two different areas of the Phoenix data
set. All disparity measurements are indicated in terms of pixel
distances in the 2048 x 2048 Phoenix stereo pair, rather than the
resolution of the selected windows.

e Area A is defined by two approximately aligned 150 x 150-
pixel windows of the Phoenix pairs which were reduced
by a factor of four (the windows thus corresponding to the
800 x 600-pixel windows of the originals). The measured
disparities for area A range from -40 to +16 pixels.

o Area B is defined by two approximately aligned 125 x 125-
pixel windows of the Phoenix pairs which were reduced
by a factor of two (the windows thus corresponding to the
250 x 250-pixel windows of the originals). The measured
disparities for area B range from -40 to -34 pixels.

Figures 2 and 3 show the inputs and outputs of three levels
of the hierarchy for areas A and B, respectively. Columns 1 and
2 are the reference and target images at each level. Column 3
is a binary image that indicates the positions of match failures.
Column 4 shows the resulting disparity image of each level after
the match failures have been replaced by surface-interpolated
disparity values.

Figures 4 and 5 contain a comparison of the HWS results with
those obtained at ETL by Norvelle for areas A and B respectively.

Ty

The bottom-left images of figures 4 and 5 show the pixel-by-
pixel differences, after contrast enhancement, between the HWS
and ETL disparities. The graphs to the right of these difference
images depict the histograms of these differences.

The mean and standard-deviation values shown with the his-
tograms provide a useful quantative comparision between the
HWS and ETL results. They show that the average disparity
differences were .082 and .025 pixels, and that the standard devi-
ations of the disparity differences were .67 and .34 pixels for the
A and B window pairs, respectively, in termis of pixel distances
in the 2048 x 2048 Phoenix pairs. These standard deviations be-
come .17 and .17 pixels when expressed relative to the scales of
A and B windows, respectively.

Similar results have been achieved for other examples that
include both higher resolution and larger windows.

7 Problems

HWS is atill very experimental. Some of the parameters that
affect the system, such as the range of disparities to compute at
each level of hierarchy and the size of the correlation operator,
are still specified manually.

There are problems in estimating the range of disparities to
be computed at each level of the hierarchy. If the estimate is
too low, there will be frequent out-of-range match failures. If,
on the other hand, the estimate is too high, computation time
will increase and there will be more potential for match point
ambiguity.

HWS has difficulty dealing with steep terrain features that
have small image projections, but large disparities. At low res-
olutions in the matching hierarchy, the disparities of the terrain
surrounding the feature dominate those of the feature itself, re-
sulting in & disparity estimate that is usually intermediate be-
tween that of the feature and that of the surround. At higher
resolutions in matching, the disparity of the steep feature may
be outside the permissible disparity range.

HWS has even greater problems with oblique stereo pairs
containing many occlusions. At low matching resolution, the dis-
parities of foreground and background in the same neighborhoods
cannot be distinguished. As the matching resolution increases,
foreground and background features are discernible as separate
objects, but their disparities are out of range for the matcher.

Most of the difficulties caused by sudden changes in disparity
might be solved by preceding the disparity surface interpolation
step with an algorithm that attempts to match still unmatched
regions in the reference image with regions in the target image
that likewise have not yet been matched. We thus attempt to
match holes with holes.

8 Conclusions

HWS produces very good results for vertical stereo pairs of
rolling terrain. With the incluson of a hole-to-hole matching step,
HWS should be capable of comparable performanc.. for terrain
characterized by steep slopes and frequent occlusions.
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FIGURE 3 HWS results for area B
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SHADING INTO TEXTURE

Alex P. Pentland
Artificial Intelligence Ceater, SRI International
333 Ravenswood Ave., Mealo Park, California 94025

ABSTRACT

Shape-from-shading and shape-from-texture methods have the
serious drawback that they are applicable only to smooth surfaces,
while real surfaces are often rough and crumpled. To extead such
methods to real surfaces we must have 3 model that also applies to
rough surfaces. The fractal surface model [Peatiand 83) provides a for-
malism that is competest to describe such matural 3-D surfaces and,
in addition, is able to predict bumaa perceptual judgments of smooth-
aess versus roughness — thus allowing the reliable application of shape
estimation techniques that assume smoothness. This mode) of surface
shape has been used to derive a technique for 3-D shape estimation
that treats shading and texture in » unified maaner.

L INTRODUCTION

The world that surrounds us, except for mas-made eavirosments,
is typically formed of complex, rough, sad jumbled surfaces. Current
tepresentational schemes, in contrast, employ smooth, analytical primi-
tives — e.g., generalized cylinders or splines — to describe three
dimensional shapes. While such smooth-surfaced represeatations func-
tion well in man-made, carpentered environments, they break down
wien we attempt to describe the crenulated, crumpled surfaces typical
of natural objects. This problem is most acute when we attempt to
develop techniques for recovering 3-D shape, for how can we expect
to extract 3-D information im & world populated by rough, crumpled
surfaces when all of our models refer to smooth surfaces only? The
fack of a 3-D model for such naturally occurring surfaces has gezerally
restricted image-understanding efforts to s world populated exclusively
by smooth objects, a sort of “Play-Doh” world [1] that is not much
more general than the blocks world.

Standard shape-from-shading [2,3] methods, for isstance, all
employ the heuristic of “smoothness” to relate neighboring points on s
sutface. Shape-from-texture {4,5] metbods make similsr sssumptions:
their models are concerned either with markings on s smooth surface,
or discard three-dimensional notions eatirely and deal oaly with ad hoe
measurements of the image. Before we ean relisbly employ such tech-
niques in the natural world, we must be sbie to determine which sur-
faces are smooth and which are not — or else generalize our techuiques
to include the rough, crumpled surfaces typically found in nature.

To accomplish this, we must have recourse to a 3-D model com-
petent to describe both crumpled surfaces and smooth ones. Ideslly,
we would like 3 modef that captures the intuition that smooth surfaces
are the limiting case of rough, textured ones, for such a model might
allow us to formulate a unified framework for obtaising shape from
both shading (smooth surfaces) and texteve (rough surfaces, markings
on smooth surfaces).

* The research reported herein was supported by National Science
Foundation Grant No. DCR-83-12766 sad the Defense Advanced
Research Projects Agency uader Costract No. MDA 903-83-C-0027
{monitored by the U.S. Army Eagineer Topographic Laboratory)

Figure 1. Sutfaces of Increasing Fractal Dimension.

The fractal model of surface shape [6,7] appears to possess the
required properties. Evidence for this comes from recently conducted
surveys of natural imagery [6.8]. These survey found that the fractal
model of imaged 3-D surfaces furnishes an accurate description of most
textured and shaded image regions. Perbaps even more conviacing,
however, is the fact that fractals look like natural surfaces [9,10,11].
This is important information for workers in computer vision, because
the natural appearance of fractals is strong evidence that they capture
all of the perceptually relevant shape structure of natural surfaces.

II. FRACTALS AND THE FRACTAL MODEL

During the last twenty years, Benoit B. Mandelbrot has devel-
oped and popularized a relatively novel class of mathemstical func-
tions known as fractals [9.10]. Fractals are fouad extensively in asture
[9.10.12). Mandelbrot, for instance, shows that fractal surfaces are
produced by many basic physical processes. The defining characteristic
of a fractal is that it has a fractional dimension, from which we get the
word “fractal.” Oue general characterization of fractals is that they
are the end result of physical processes that modify shape through lo-
cal action. After innumerable repetitions, such pr will typically
produce a fractal surface shape.

The fractal dimension of a surface corresponds quite closely to our
intuitive notion of roughness. Thus, if we were to generate a series of
scenes with the same 3-D relief but with increasing fractal dimension
D, we would obtain a sequence of surfaces with linearly increasing
perceptual roughness, as is shown in Figure 1: (a) shows a fiat plane
(D == 2). (b) rolling countryside (D me 2.1), {c) sa old, worn mountain
range (D = 2.3). (d) a young. rugged mountain range (D s 2.5), sad,
Bnally (e). a stalagmitescovered plane (D = 2.8).

EXPERIMENTAL NOTE: Ten saive subjects (maturak
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{anguage researchers) were shown sets of Bfteen 1-D curves sod
2.D surfaces with varying fractal dimension but cosstant range
(e.8.. see Figure 1), and asked to estimate roughness on a scale
of one (smoothest) tc ten (roughest). The mean of the subject’s
estimates of roughness had s nearly perfect 0.98 correlation (i.ec.,
96 of the variance was sccounted for) (p < 0.001) with the
curve’s or surfaces's fractal dimension.” The fractal measure of
perceptual roughaess is therefore almost twice as accurate as a2y
other reported to date, e.g., [13].

Fractal Brownian Functiops. Virtually all fractals encountered in
phivsical models have two additional properties: (1) each segment is
statistically similar to all others; (2) they are statistically invariant
ovet wide transformations of scale. The path of a particle exhibiting
Brownian motion is the canonical example of this type of fractal; the
discussion that follows, therefore, will be devoted exclusively to frac-
tal Brownian functions, which are 3 mathematical generalization of
Browpian motion.

A random function /(z) is s fractal Browsian function if for all z

and Ar
Pr( I+ A2)-Kz) ') -Fiy) )

Hasz)”

where F(y) is a cumulative distribution function (7). Note that z and
I{r) can be interpreted as vector quantities, thus providing an extension
to two or more topological dimensions. If J(z) is scalas, the fractal
dimension D of the graph described by J(z)is D= 2—H . f H == 1/2
and F(y) comes from a zero-mean Gaussian with wnit varisnce, then
I(z) is the classical Brownian function.

The fractal dimension of these fanctions can be measured either
directly from I(x) by using® of Equation 1, or from I(z)'s Fourier power
spectrum®® P(f). as the spectral deasity of a fractal Brownian function
is proportionalt to f—3H-1,

Properties of Fractal Brownpias Functions. Fractal functions must
be stable over common transformations if they are to be useful as &
descriptive tool. Previous reports [6,7) bave shown that the fractal
dimension of a surface is invariant with respect to linear transforma-
tions of the data and to transformations of scale. Estimstes of fractal
dimension. therefore, may be expected to remain stable over smooth,
monotonic transformations of the image dsta aad over changes of scale.

A. The Fractal Surfue Model And The Imaging Process

Before we can use a fractal model of natural surfaces to help us
understand images, we must determine how the imaging process maps
3 fractal surface shape into an image intensity suzface. The frst step
is to define our terms carefully.

DEFINITION: A fractal Brownian surface is » continuous function
that obeys the statistical description given by Equation (1), with z as

*We rewrite Equation (1) to obtain the following deseriptioa of the
manner in which the second-order statistics of the image change with
scale: E(|ATs 371~ = E)ALsseit}) where EYjAJa,]) is the ex-
pected value of the change in intensity over distance Az. To estimate
H. and thus D. we calculate the quaatities E(|A/a,]) for various Az,
and use 3 least-squares regression on the log of our rewriitew Equation
(1).

“*That is, since the power spectrum P(/) is proportional to /=37 =) we
may use a finear regression on the log of the observed power spectrum as
afunction of [ (e.g., a regression using log(P(/)) = —(2H +1)log(f)+&
for various values of /) to determine the power H and thus the fractal
dimension.

Discuseion of the rather technical proof of this proportionality may
be found in Mandelbrot [10].

v
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a two-dimensional vector at all scales {i.e., values of Az) between some
smallest (Azmin) and largest (Azme,) scales.

DEFINITION: A spatlally Isotrople fractal Brownlan surface
is a surface in which the components of the surface sormal N =
(N2, N, N;) are themselves fractal Brownian surfaces of identical frac-
tal dimension.

Our previous papers [6,7] bave presented evidence showing that
most natural surfaces are spatially isotropic fractals, with Azme and
AZmas being the size of the projected pixel and the size of the examined
surface patch, respectively. This finding bas since been confirmed by
others [8]. Furthermore, it is interesting to mote that practical fractal
generation techniques, such as those used in computer graphics, bave
had to constrain the fractal-generating function to produce spatially
isotropic fractal Brownian surfaces in order to obtain realistic imagery
{11]. Thus, it appears that many real 3-D surfaces are spatially isotropic
fractals, at least over a wide range of scales” .

With these definitions in hand, we can now address the problem
of how 3-D fractal surfaces appear in the 2-D image.

Proposition 1. A 3-D surface with a spatially isotropic fractal
Brownian shape produces an image whose intensity surface is fractal
Brownian and whose fractal dimension is identical to that of the com-
ponents of the surface normal, given a Lambertian surface reSectance
function and constant illumination and albedo.

This proposition (proved in |7]) demonstrates that the [ractal
dimension of the surface normal dictates the fractal dimension of the
image intensity surface and, of course, the dimension of the physical
surface. Simulation of the imaging process with a variety of imag-
ing geometries and reflectance functions indicates that this proposition
will hold quite generally: the “roughness™ of the surface seems to die-
tate the “roughness™ of the image. If we know that the surface is
bomogeneous,”® we can estimate the fractal dimension of the surface
by measuring the fractal dimension of the image data. What we have
developed, then, is a method for inferring a basic property of the 3-D
surface — i.e,, its fractal dimension — from the image data. The fact
that fractal dimension has also been shown to correspond closely to our
intuitive notion of roughness confirms the fundamental importance of
the measurement.

EXPERIMENTAL NOTE:Fifteen naive subjects (mostly lan-
guage researchers) were shown digitized images of eight aatural
textured surfaces drawn from Brodats [14]. They were asked “if
you were to draw your finger horizontally along the surface pic-
tured here. how rough or smooth would the surface feel?” — i.e.,
they were asked to estimate the 3-D roughness/smoothness of the
viewed surfaces. A scale of one (smoothest) to ten {roughest) was
used (o indicate 3-D roughoess/smoothness. The mesn of the
subject’s estimates of 3-D 7 ss bad aa llent 0.91 correla-
tion (i.e., 83 of the variance accounted was for) (p < 0.001)with
roughnesses predicted by use of the image's 2-D fractal dimeasion
and Proposition 1. This result supports the general validity of
Proposition 1.

B. Identification of Shading Versus Texture

Fractal functions with H == 0 are plasar except for random vatis-
tions described by the fanction F(y) in Equation (1). If the variance
of F{y) is small people judge these surfaces to be “smooth”; thus,
the fractal model with small values of H is appropriste for modeling
smooth, shaded regions of the image. If the surface has significant local

“This does not mean that the surfaces are completely isotropic, mearly
that their fractal (metric) properties are isotropic.

**Perhaps determined by the use of imaged color.
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fluctuations, i.e., if F(y) is large, the surface is seen as being smooth
but textured, in the sense that markings or some other 2-D eflect is
modifing the appearance of the underlying smooth surface. In contrast,
fractals with H > O are not perceived as smooth, but rather as being
rough or three-dimensionally textured.

The fractal model can therefore encompass shading, 2-D texture,
and 3-D texture, with shading as a limiting case in the spectrum of
3-D texture granularity. The fractal model thus allows us to make 3
reasonable, rigorous and perceptually plausible definition cf the cate-
gories “textured”™ versus “shaded,” “rough” versus “smootb,” in terms
that can be measured by using the image data.

The ability to differentiate between “smooth™ and “rough” sur-
faces is critical to the performance of current shape-from-shading and
shape-from-texture techniques. For surfaces that, from s perceptual
standpoint, are smooth (H = 0) and not 2-D textured (Var(F(y))
small), it seems appropriate to apply shading techniques.’ For sur-
faces that have 2-D texture it is more appropriate to apply available
texture measures. Thus, use of the fractal surface model to infer
qualitative 3.D shape (namely, smoothaess/roughness), has the poten-
tial of significantly improving the utility of many other machine vision
methods.

II. Shape Estimates From Texture And Shading

The fractal surface model allows us to do quite a bit better than
simply identifying smooth versus textured surfaces and applying pre-
viously discovered techniques. Because we have s upified model of
shading, 2-D texture and 3-D texture, we can derive a shape estimation
procedure that treats shaded, two-dimensionally textured, and three-
dimensionally textured surfaces in a single, unified manner.

A. Development of & Robust Texture Msasure

Let us assume that: (1) albedo and illumination are comstant in
the neighborhoad being examined, and (2) the surface reflects light
isotropically (Lambert’s law). We are then led to this simple mode! of
image formation:

I=p\(N-L) (2)

where p is surface albedo, ) is incident flux, N is the [three-dimensional]
unit surface normal, and L is a [three-dimensional] unit vector point-
ing toward the illuminant. The first assumption means that the model
holds only within homogeneous regions of the image, e.g., regions
without self-shadowing. The second assumption is an ideslization of
matte, diffusely reflecting surfaces and of shiny surfaces in regions that
are distant from highlights and specularities [3].

In Equation (2). image intensity is dependent upon the surface
normal, as all other variables have been assumed constant. Similarly,
the second derivative of image intensity is dependent upon the second
derivative of the surface normal, i.e.,

&1 == p\(#N - L) @)

(Notation: we will write d°J and d®N to indicate the second detiva-
tive quantities computed along some image direction (dz, dy) — this
direction to be indicated implicitly by the context.)

The fractal model taken together with previous results [15], implies
that on average d°N is parallel to N. Consequently, if we divide
Equation (2) by Equation (3) we will on average obtain the following

*Indeed, it is only in these cases that measurement noise can be reduced
(by averaging) to the levels required by shape-from-shading techniques
without simuitaneously destroying evidence of surface shape.

relationship:

(1 571) - £( )~ ey @
where E(z) denotes the expected value [mean] of z. That is, we can
estimate how crumpled and textured the surface is (i.e., the sverage
magoitude of the surface normal's second derivative) by observing
E(|&1/1).

Equation {4) provides us with a measure of 3-D texture that is (on
average and under the above assumptions) independent of illuminant
eflects. This measure is affected by foreshortening, however, which acts
to increase the apparent frequency of variations in the surface, e.g., the
average magnitude of d°N. We can, therefore, obtsin an estimate of
surface orientation by employing the approach adopted in other texture
work {5]: if we assume that the 3-D surface texture is isotropic, the
surface tilt’ is simply the direction of maximum E(|d*J/J|) and the
surface slant®’ can be derived from the ratio between maxy E{|d?1/1|)
and ming E(|d°I/1]), where & designates the [implicit] direction slong
which the texture measure is evaluated. Specifically, the surface slant
is the arc cosine of 2y, the z-component of the surface normal, and
for isotropic textures sy is equal to the square root of this ratio. The
square-root factor is necessitated by the use of second-derivative terms.

One of the advantages of this shape-from-texture technique is that
pot only can it be applied to the 2-D textures addressed by other
researchers [1,5] (by simply using this texture frequency measure in
place of theirs’ ), but it can also be applied to surfaces that are
three-dimensionally textured — and in exactly the same manner. This
texture measure, therefore, allows us to extend existing shape-from-
texture methods beyond 2-D textures to encompass 3-D textures as
well,

B. Development of a Robust Shape Estimator

These shape-from-texture techniques sre critically dependent
upon the assumption of isotropy: when the textures are amisotopic
(stretched), the error is substantial. Estimates of the fractal dimension
of the viewed surface [6.7], by virtue of cheir independ with respect
to multiplicative transforms, offer a partial solution to this problem.
Because foreshortening is a multiplicative eflect, the computed fractal
dimension is not affected by the orientation of the surface.!' Thus,
if we measure the fractal dimension of an isotropically textured sur-
face along the z and y directions, the measurements must be identical.
If, however, we find that they are unequal, we then have prima facie
evidence of anisotropy in the surface.

This method of identifving anisotropic textures is most efective
when each point on the surface has the same direction and magnitude
of anisotropy, for in these cases we can accurately discriminate changes
in fractal dimension between the z and y directions. When the surface
texture is variable, however, this indicator of anisotropy becomes less
useful. Thus, local variation in the surface texture remains & major
source of error in our estimation techaiques; it is therefore important
to develop a method of estimating surface orientation that is robust
with respect to local variation in the surface texture.

* The image-plane component of the surface normal, i.e., the direction
the surface normal would face if projected onto the image plane.
**The depth component of the surface normal.

tThis measure includes edge information, i.e., the frequency of Marr-
Hildreth zero-crossings as we move in a given direction appears to be
proportional to E{|#*1]1]) along that direction; consider that Mare-
Hildreth zero-crossings are also zero-crossings of d®//1.

At least not until seif-occlusion effects bave become dominant in the
appeatrance of the surface.
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Figure 2. Variation in Local T (s) Compared with No Varistion (b).

Such robustness can be obtained by applying regional, rather than
purely local, constraints. Natural textures are often “homogeneous”
over substantial regions of the image, although there may be significant
Jocal variation within the texture, because the processes that act to
create a texture typically affect regions rather than pointe on s surface.
This fact is the basis for interest in texture segmentation techniques.
Curreat shape-from-texture techniques do not make use of the regional
nature of textures, relying instead on point-by-point estimates. By
capitalizing on the regional nature of textures we can derive s substan-
tial additional constraint on our shape estimation procedure.

Let us assume that we are viewing a textured planar surface whose
orientation is a 30° slant and a vertical tilt. Let us further suppose
that the surface texture varies randomly from being isotropic to being
anisotropic (stretched) up to an aspect ratio of 3:1, with the direction
of this anisotropy also varying randomly. Such a surface, covered with
small crosses, is shown in Figure 2(a); for comparison, the same surface,
minus anisotropies, is shown in Figure 2(b).

It we appl) standard shape estimation techniques — i.e., estimat-
ing the amount of foreshortening (and thus surface orientation) by the
ratio of some texture measure along the [apparently] unforshortened
and [apparently] maximally foreshortened directions — our estimates
of the foreshortening magnitude will vary widely, with a mean error of
65%¢ and an rms error of 815c. If, however, we estimate the value a
of the unforshortened texture measure by examining the entire region,
and then compare this regional estimate to the texture measure slong
the (apparently) maximally foreshortened direction then our mean er-
ror is reduced to 405¢ and the rms error to 49%.

By combining this notion of regional estimation with the texture
measure developed above, i.e.. E{{d®]]1]), we can construct the follow-
ing shape-from-texture algorithm that is able to deal with both smooth
two-dimensionally textured surfaces and rough, three-dimensionaliy
textured surfaces, aad that is robust with respect to local varistions
in the surface texture.

C. A Shape Estimation Algorithm

We may construct a rather elegant and efficient shape estimation
algorithm based on the notion of regional estimation and on the texture
measure introduced above by employing the fact that

" ﬂl [
Vi = du"' )

for any orthogonal n. v Thi« identity will allow us to estimate the
surface slant immediately rather than having to search all orientations
for the directions along which we obtain the maximum and minimum
values of E(|4*1/1).

Let us assume that we have already determined o =
ming E(|d®//1]). which is the regional estimate of unforeshortened
E{|@?Nj). When the estimate of a is exact, Equation (5) gives us the

Figure 3. Tuckerman’s Ravine.

) -emmpe(1l)

as the directions of maximum and minimum E(I‘-;ll) are ortbogonal.
We may therefore estimate zy, the z component of the surface

normal, by e
w=(252) g

where 8 = E(|V21/1]) and a is the regional estimate of the unforeshor-
tened value of E({d?1/1]). The constant a can be estimated either by
the median of the local [apparently] unforeshortened texture-measure
values, or by use of the constraint that 0 < zy < 1 within the region.
The direction of surface tilt can then be estimated by the gradient of
the resulting slant field — e.g., the local gradient of the z) values —
or (as in other methods) by examining each image direction to find the
one with the largest-value of the texture frequency messure. In sctual
practice we have found that the gradient method is more stable.

result that

D. A Unified Treatment of Shading and Texture

The fractal surface model captures the intuitive motion that, if
we examine 3 series of surfaces with successively less three-dimensional
texture, eventually the surfaces will appear shaded rather than tex-
tured. Because the shape-from-texture technique developed bere was
built on the fractal model. we might expect that it too would degrade
gracefully into a shape-from-shading method. This is in fact the case:
this shape-from-texture technique is identical to the local shape-from-
shading technique previously developed by the author {15]. That is, we
have developed a shape-from-x technique that applies equally to 2-D
texture, 3-D texture and shading.

As an example of the application of this shape-from-texture-
and-shading technique.” Figure 3 shows (a) the digitized image of
Tuckerman's ravine (a skiing region on Mt. Washington in New
Hampshire). and (b) a relief map giving a side view of the estimated
sarface shape, obtained by integrating the slant and tilt estimates.**

*This example was originally reported in Pentland [15] as the output
of a local shape-from-shading technique followed by averaging and in-
tegration. This algorithm is identical to the shape-from-texture tech-
nique described here: in fact. investigation of the shape-from-texture
properties of this method was motivated by the consternation caused
by this successful application of a shading technique to a textured sur-
face.
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This velief map may be compared directly with a topographic map of
the area; when we compare the estimated shape with the actual shape,
we Sad that the roll-off at the top of Figure 3(b) and the steepacss of
the estimated surface are correct for this surface; the slope of this area
of the ravine averages GO°.

IV. Summery -

Shape-from-shading and texture metbods have had the serious
drawback that they are applicable only to smooth swurfaces, while
real surfaces are often rough and crumpled. We have extended these
methods to real surfaces using the fractal surface model [6,7]. The
fracta) model's ability to distinguish succesafully betwees perceptually
*smooth” and perceptually “rough” surfaces allows reliable application
of shape estimation techniques that assume smoothaess. Furthermore,
we have used the fractal surface model to construct a method of es-
timating 3-D shape that treats shading and texture is a wnifed manner.
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Goal-Directed Textured-Image Segmentation

Kenneth I. Laws

Artificial Intelligence Center
SRI International

Abstract

The SLICE textured-image segmentation system identifies image regions that
differ in gray-level distribution, color, spatial texture, or other local property.
This report concentrates on textured-image segmentation using local texture-
energy measures and user-delimited training regions. The SLICE algorithm
combines knowledge of target textures with knowledge of background textures
by using histogram-similarity transforms. Regions of high similarity to a target
texture and of low similarity to any negative examples are identified and then
mapped back to the original image. This use of texture-similarity transforms
during the segmentation process improves segmenter performance and focuses
segmentation activity on material types of greatest interest. The system can also
be used for goal-independent texture segmentation by omitting the similarity-
transform computations, and its hierarchical, recursive segmentation strategy
integrates very well with other image-analysis techniques.

1. Introduction

This paper presents a new goal-directed method of textured-image segmentation. The
SLICE segmentation algorithm is one component of a proposed knowledge-based image
feature-extraction system. The algorithm is currently implemented in the SLICE program,
a region-based recursive segmentation system running on the DARPA/DMA Image Under-
standing Testbed at SRI International. The SLICE program is capable of goal-independent
segmentation and other image manipulations in addition to the texture segmentation dis-
cussed in this paper.

Aerial images are very difficult to segment into meaningful regions, despite the fact that
humans seem to do this effortlessly. Attempts to develop segmentation algorithms using
only monochrome input data have had little success. Segmentation using color and infrared

This research was supported by the Defense Advanced Research Projects Agency under Contract
No. MDA903-83-C-0027.
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" data has worked somewhat better, but such data is often unavailable. This report describes

techniques for using the spatial textures in monochrome imagery in much the same way
that color has previously been used.

Image textures arise from many physical sources. Cellular textures are composed of
repeated similar elements, such as leaves on a tree or bricks in a wall; other texture types
include flow patterns, fiber masses, and stress cracks. A complete analysis of any tex-
ture would require modeling of the underlying physical structures and processes. In most
applications, texture recognition is more important than knowledge of the generating mech-
anism. The algorithm presented in this report can be used for texture recognition and
material identification when we have knowledge of scene texture types, and for locating and
characterizing textured regions even when we have no such knowledge.

The SLICE algorithm consists of three parts: goal-directed texture transformation,
multiple histogram-based threshold segmentations, and spatial analysis of the proposed
segmentations in order to choose the best one. These steps may be repeated on the newly
found regions to further segment them. A high-level control system could be used to focus
the segmenter’s “attention” on important image regions and can determine when to stop
partitioning a given region (using size, shape, homogeneity, semantic, or priority considera-
tions). Regions found by other image-analysis techniques can also be combined with those
found by the SLICE algorithm.

This report describes the SLICE algorithm and the rationale for each part of the tech-
nique. Section 2 introduces some definitions used throughout the report. Section 3 briefly
describes the basic texture transforms used to measure local spatial variation around a
pixel. Section 4 discusses maximum likelihood classification methods, and points out why
they are not optimal for texture segmentation. Section 5 presents similarity transforms that
can be used to locate desired texture signatures in an image. Sections 6 and 7 describe the
integration of texture similarity transforms with histogram-based segmentation to produce
goal-directed segmentation using multiple texture bands. Section 8 then presents examples
of the technique, and Section 9 summarizes the characteristics of this approach. Details of
the modified PHOENIX goal-independent color-image segmentation technique used in the
current SLICE program are presented in Appendices A and B.

2. Background

An image is a two-dimensional array of pixels, where pixels are numbers (usually integers
in the range 0 to 255) or vectors of numbers representing information about an imaged
scene. An image of vector-valued pixels may be thought of as a set of two-dimensional,
scalar-valued layers called data bands. (Indeed, the pixel data is usually stored in this
layered fashion.)

Pixel values typically represent intensity of light (infrared, visible, or ultraviolet) or
other electromagnetic energy reaching a sensor from a point in the imaged scene, but may
correspond to other measurable scene properties. Data bands may also record such com-
puted information as stereo disparity, intensity gradients, filter responses, estimated scene
albedo, or inferred surface slope. In this paper we shall be particularly concerned with
texture bands computed from local texture properties around each pixel.

The integer values that can be assumed by a scalar pixel are called gray levels. Even non-
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physical data values such as texture statistics are representable as gray levels or intensities,
since the data bands may be displayed on an image monitor as black-and-white luminance
images. A special type of data band, called a map, stores at each pixel an integer value
representing the material type or other nominal category assigned to that pixel. A segmen-
tation map or region map has a unique integer assigned to all pixels in an image region and
different integers assigned to different regions. Segmentation maps are often displayed using
pseudocolor (i.e., arbitrary assigned region colors), since display as a luminance image is
not meaningful.

The value of a pixel is easily read out of the array; all other information about the imaged
scene is implicit. It is the task of low-level image processing to make useful spectral or spatial
information explicit so that the more expensive high-level feature-extraction operators and
reasoning processes can utilize it. This paper will describe a goal-directed method for
extracting homogeneous image regions satisfying prespecified criteria as to size, location,
gray-level distribution, and texture.

3. Texture Transforms

Textures can be recognized if one or more distinctive properties can be measured. (There
are also structural or “syntactic” pattern-recognition methods that do not require texture
metrics.) Many ways of computing texture descriptors have been proposed. Some of the
most powerful descriptors, both individually and in combination, are the tezture-energy
measures [Laws 80] and their variants [Pietikainen 82, Harwood 83]. These measures do
not describe texture-generating mechanisms or parameters directly, but do tend to be con-
stant across any perceptually homogeneous texture region and distinct for distinct textures.
(Within macrotextures having large elements they tend to be multimodal with histogram
peaks corresponding to the edges and interiors of the texture elements.)

Texture energy is the amount of variation within a filtered window around a pixel. A
particular texture energy measure thus depends on the spatial filter, the window size, and
the method of measuring average variation within the window. The transforms require only
simple convolution and moving-average techniques; moreover they can be made invariant
to changes in image illumination, contrast, and rotation without histogram equalization or
other preprocessing operations.

There are two required steps in applying a texture-energy transform. The first step is
to filter the original scalar image with a small convolution mask. The mask is typically
a binomially weighted array (defined below) that enhances image spots, edges, or high-
frequency components. Binomially weighted masks are both separable and decomposable
into smaller convolution masks, making them easy to implement efficiently on a variety of
architectures. The set of filter masks used determines the spatial frequencies or texture
structures that the transforms will measure,

The 3 x 3 binomially weighted masks are shown in Figure 1. They were constructed by
convolving the vectors [ 1 2 1],[ =1 0 1], and [ -1 2 — 1] with their own transposes.!
Larger masks may be constructed by convolving the 3x3 masks with themselves. Binomially

"These vectors are themselves constructed from the vectors | 1 1] and | =1 1). The mask names are
derived from the terms level, edge, and spot for the 3-vectors of sequency 0, 1, and 2. Similar names are
used for the 5-vectors and 5 x 5 masks, with the addition of W (wave) and R (ripple) for the vectors of
sequency 3 and 4.
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Figure 1: Orthogonal 3 x 3 Texture Masks

weighted filter masks of sizes 3 x 3, 5 x 5, and 7 x 7 were found to be nearly equivalent in
tests on a very limited class of textures [Laws 80]. For aerial image analysis, the 3 x 3 masks
seem likely to be the most useful, although strong patterns such as orchards and crop rows
may be better discriminated using larger masks.

An exponential series of mask sizes may be needed for multiresolution texture analysis.
Application of large binomial weighted masks (with coefficients in the billions) can be very
difficult even if done by repeated filtering with smaller masks. A better method is to
construct a pyramid of image reductions and then apply a single mask size to all levels of the
pyvramid. The unfiltered image itself may be used as the highest-resolution “filtered” band,
and its local-energy statistics may be useful either as texture measures or for normalizing
the other texture measures when contrast invariance is desired.

The second texture-transformation step is to apply a local-energy operator to the fil-
tered image to produce a texture-energy data band. Texture energy at a point is just the
variance of the filtered-image values computed over a window around the point. Standard
deviation, or the square root of the variance, has been found just as effective. For zero-mean
filtered bands, the standard deviation is usually approximated by an average of the filtered-
image magnitudes (i.e., absolute values) over a window. Such averages can be computed by
moving-window techniques that are very fast, even on general-purpose digital computers.

An energy-gathering window of about about five or ten times the area of the filter
mask is recommended; larger sizes give better classification accuracy when applied to large
texture patches but lack the resolution needed for analysis of typical 512 x 512 aerial image
displays. The time required to compute the local energy is independent of the window
size, since each pixel is examined only once as it enters the window and once as it leaves.
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(A fading-memory approximation to moving-window averaging can also be used to permit
single-pass computation of texture energy values without storing the intermediate filtered
image.)

Texture descriptors computed with the suggested masks are unaffected by most scene il-
lumination and sensor bias effects because all but the first mask produce zero-mean outputs.
Level-invariant texture energy bands may be normalized by the variance of the unfiltered
image if contrast-invariant texture measures are desired. Pairs of texture energy values
representing directional image structure can also be averaged if rotation-invariant texture
measures are desired. Decisions about when to normalize or average are best left to a
control system capable of reasoning about particular analysis tasks and image context .

4. Maximum Likelihood: The Trouble with Optimal Discrimination

We now have a multiband image composed of luminance or spectral bands and derived
_ texture bands. We want a quick way to partition the vector-valued pixels into homogeneous
: groups, preferably using a priori knowledge of target signatures when it is available. The
= texture transforms make it likely that each texture signature in the image will have a fairly
predictable Gaussian distribution in at least one data band. The temptation to jump to
2 multivariate Gaussian discriminant analysis is almost overwhelming.
i There is a good reason for trying other methods, however, even when we have sufficient
- multivariate training data to compute the needed means and variances (or covariance ma-
N trices). Maximum-likelihood Gaussian discriminant analysis? is optimal for separating two
» or more multivariate Gaussian distributions, but we do not have Gaussian distributions as
- such—we have mixtures thereof. Even within a single data band we may have at best one
ﬁ Gaussian and one mixture density to be discriminated.

" This is not to say that the discriminant analysis won’t work, only that the conditions
& for optimality are not satisfied. The procedure for computing discriminant functions will
" reduce positive and negative training instances to means and standard deviations, reject
- any data bands in which the means and standard deviations are similar, and do the best

it can with a linear or perhaps quadratic function of the means and standard deviations in
' the remaining bands. The result is that much of our knowledge about target signatures in
different data bands will be discarded.
- As an example, consider a texture that is known to have a Gaussian distribution in a
particular data band. Assume that the scene might also contain instances of another texture
with a strongly bimodal salt-and-pepper distribution. These two distributions should be
~ easily distinguished, but they may not be discriminable by mean and standard deviation
alone. We could use multivariate statistics and compute covariances with data values in
other bands. but the resulting classifier might be unstable and difficult to train. We could
also seek a transform to another data band in which the two textures are separable, but
that will not work if there are other textures that might also be present in the scene,
Discriminant analysis is thus a poor way to deal with this situation.
There is also the matter of a priori probability. Any form of maximum-likelihood classi-
fier performs best if the decision thresholds are properly adjusted for the a priori probability
of that texture’s appearing in the scene. We may be able to guess reasonable probabilities

*l.e.. multivariate minimum-distance classification using an inverse-covariance, or Mahalanobis, weighting.
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based on previous analyses of similar imagery, but biasing the analysis with such values
instead of just examining the evidence in the image is a suspect procedure. Assigning equal
likelihood to all possible scene entities is even more suspect.

We could live with these problems, but there are better ways of finding and distinguishing
textures. These will be described in the remainder of this paper.

5. Similarity Transforms: Encoding Goals and Knowledge

The key to efficient goal-directed segmentation is to estimate quickly whether any given
pixel is part of the texture or target signature we are seeking. We have already computed
a texture bands in order to collapse implicit information about a pixel’s neighborhood into
S explicit information stored in the pixel’s data vector. We now need a scalar measure of
i similarity {or, conversely, of dissimilarity) between a pixel data vector and a target signature.
' The simplest dissimilarity measure is the Euclidean distance between the image pixel

vector and a prototype vector representing a known texture type or previously extracted

: region signature. We could invert this if we wanted a similarity measure. We could also

[:- weight the component single-band distances differently if we had knowledge that some data
bands were more critical for recognition than others.

The easiest way to determine, or to “learn,” which data bands are important is to keep

i track of the multivariate statistics within a target population and compare them with the

statistics for other possible scene entities. This leads to Mahalanobis distance as a measure

of dissimilarity between a pixel and a prototype. As discussed above, this would be optimal

for Gaussian distributions, since they are fully characterized by their means and covariances.

It is not necessary to represent a texture prototype by statistical vectors and matrices,
nor is it necessary to specify complex parsing rules. Ap intermediate strategy is to represent
a texture or target signature by its full histogram in each data band. (A knowledge-based
system would also have rules for manipulating these histograms in accordance with overall
image illumination and contrast; we shall assume here that any required normalization has
been done or will be compensated for during the image analysis.)

Storing histogram vectors as prototypes is very easy for a region-based system because
the region histograms are always readily available. To train the system one has only to trace
or extract a suitable region, assign it a label, and store it in the knowledge base. The only
complication is that diflerent data bands may be used during different image analyses, so
that prototypes saved during one session may not include the bands needed during another
session. There would also be some difficulty if the same data band were scaled or quantized
differently for each session, but we can usually compensate for such discrepancies.

Computing similarity between a pixel and a prototype is a bit more difficult than com-
puting Mahalanobis distance. We can split the problem into that of computing similarity
within a given band and that of combining different band similarities into a single overall
similarity measure, although such a two-step procedure is not necessarily optimal.

Consider then the problem of estimating how likely it is that an observed gray level in a
data band came from one prototypical population and not from another. W= may formalize
and generalize this problem as follows. Given that we have observed a gray level g as an
independent random sample, what is the probability that the source population was one of a
set w of positive exemplar distributions, w;, and not from one of a set ¢ of negative exemplar
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distributions, ¢;? We shall assume that we know each of the prototype distributions by a
single histogram representing an unbiased sample from some large population. We have,
then, sets of histograms estimating Pr(g|w;) and Pr(g|¢;) and we wish to compute Pr(w]g).

If we assume disjoint and exhaustive source populations, we can compute the probability
that the observed sample gray level g came from a positive exemplar source population as
the normalized sum of probabilities for the members of the set:

L Pr(wilg)
L Pr{wilg) + ; Pr(4;l9)

The denominator should sum to one, given our assumptions, but this formula will work even
if the probabilities are expressed relative to some larger set of disjoint source populations.
Bayes’ rule applied to each component term in the summations gives us

3 Pr(glws) Pr(w:)
L Pr(glw;) Pr(w;) + L; Pr(glé;) Pr(4;) ’
where a term Pr(g) has been canceled from the numerator and denominator. This is the the-

oretical form of the similarity function that we need. If we assume equal a priori probability
for each source population, the formula simplifies to

Pr{wlg) =

Pr(wlg) =

MG AINATAIR D

_ ¥ Pr(glw:)
Pr(wlg) = ¥ Priglws) + X Pr(g]é;)

Although the current SLICE program makes this simplification, additional knowledge of
the scene domain might provide a better set of weightings.

Now, how do we compute Pr(g|w;)? We could simply take the bin count for bin g in the w;
histogram and divide it by the total namber of counts in the histogram. This would have two
undesirable effects: the estimated probability for adjacent bins could vary wildly because
of sampling fluctuations or “picket-fence” quantization effects, and the similarity formula
could not be evaluated for bins that happened to be empty in all prototype histograms.

If the histograms were samples from Gaussian distributions, we could use the sample
mean and variance to estimate the true population bin probabilities for every gray level.
Since we generally have mixture densities, this approach would require that every prototype
texture histogram he decomposed into component Gaussians. While this is difficult, it could
be done (at least approximately) either automatically or interactively at the time a texture
prototype is entered into the system’s knowledge base. We note that this is an optimal
solution, but will now proceed to develop a much simpler heuristic approximation.

If a distribution is known to be Gaussian, we achieve the greatest predictive power by
using techniques appropriate to that parametric form. If we have no knowledge of the
parametric form, we can still treat the histogram as a sample taken from a multinomial
distribution having unknown bin probabilities.

An observed bin probability, Pr(g|w;), is an unbiased estimate of the true bin proba-
bility in the sampled population. It is not, however, the best estimate of that generating
probability, given that a sample has been taken. An example may clarify this somewhat
difficult concept. Suppose that we have formed our prototype histogram by sampling a
single pixel. We shall then have a single populated bin and 255 empty bins (assuming &-bit
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quantization). Are we then willing to say that our best estimate for the population distri-
bution is a spike at the observed gray level and zero probability of any other value? No, we
would wish to be more conservative, even if we were not assuming an underlying Gaussian
model.

Our intuition serves us well here. Bayes showed in 1763 that the a posteriori probability
of a given multinomial bin-generating probability, given an observed histogram, has a beta
distribution, which is a continuous distribution resembling a skewed binomial [Jaynes 83].
The mean, or expectation, of this distribution is [Abramowitz 64, p. 930]

observed bin count + 1
number of bins + number of samples

Using this as our Pr(glw;) has the effect of smoothing the population histogram estimate
slightly by adding a fractional count to each bin. This permits us to compute our similarity
measure even for bins that are to be empty in all prototype histograms.

The similarity function is now optimal for multinomial distributions, but not for Gaus-
sian mixture densities. It fails to allow either for the strong correlation between nearby
bin counts that is due to the component densities or for the exponential decrease in bin
frequency as a gray level is chosen farther from any histogram peak. The first eflect is partic-
ularly noticeable when the training data contain regularly spaced empty bins resulting from
a sticky quantizer bit or from contrast stretching that introduced a picket-fence envelope.
While we can imagine separating two textures by their differing picket-fence characteristics
(i.e., by trivial differences in gray levels), this is not the type of behavior we want to build
into our image segmenter.

The solution, short of actually finding the component Gaussian densities, is simply to
smooth the histograms. The SLICE program uses a binomial kernel (this is the best discrete
approximation to a Gaussian) with a standard deviation of 1, 3, or § pixels. Histogram
counts are scaled by 1000 so that fractional bin counts can be represented; this scaling must
be compensated for when computing the similarity transform.

The above smoothing extends each tail of a histogram peak for a dozen pixels or so,
then drops to zero. The multinomial bin correction that is subsequently applied will lift
this slightly above zero, but by an amount that does not vary with distance from the
histogram peak. This causes undesirable behavior of the similarity transform for gray levels
near the ends of typical histograms. Consider the case of a very sharp Gaussian peak for
our positive exemplar and a broad peak or mixture density for our negative one. Further
assume that the positive-exemplar histogram contains only a few hundred pixels and that
our negative exemplar is based on a very large sample, typically the entire image we wish
to segment. We would expect that image pixels far from the positive exemplar peak would
have very low similarity to that texture type because the associated Gaussian distribution
would have a very sharp exponential decay. Instead we compute a high similarity because
the multinomial correction for a histogram with few counts is a much larger number than
that for a histogram with many.

This leads to one more adjustment, a factor that provides exponential (i.e., Gaussian)
decay in the multinomial correction as we select bins farther from the nearest or broadest
peak in a histogram. There is no need to be precise here, so we can use an approximation
based on the distance to the lowest or highest count in the smoothed histogram. Only the
multinomial correction is applied for gray levels that are between these two limits. For
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pixels outside the observed sample range, the 1 in the multinomial correction is replaced
by exp(- 2w_d)' where d is the distance to the nearest bin in the observed range and w is the
number of bins in that range.

6. Goal-Directed Segmentation

We now have a rapid method of computing the similarity of an observed gray level in an
image band to a set of positive exemplar textures (or target signatures) with respect to a set
of negative exemplar textures. We can apply this function efficiently by precomputing the

: similarity measure for every possible texture-band gray level and then looking up each image
pixel’s value in the resulting table of values. We shall usually have a particular texture or
£ target signature as a positive exemplar and shall use the full image (or region) histogram as a
_ negative one. (This implicit inclusion of the texture we are seeking in the negative-exemplar

histogram will not cause problems unless it is a major component of that histogram. If it is,
we might first suppress that component of the negative-exemplar histogram by subtracting
a multiple of the positive-exemplar histogram. The SLICE program does not yet include
such a correction procedure.)
Our problem, then, is to select a similarity threshold that will separate all (or at least
; most) of the instances of our target texture from instances of all other textures. If multi-
i ple similarity bands are available, we should either select the best band for our threshold
segmentation or combine the information in all the bands. This section describes a seg-
mentation method capable of selecting the best similarity band for extracting examples of
the target texture and of recognizing those cases in which no satisfactory threshold can be
found. The next section will discuss other methods of combining information from multiple

h similarity bands.

- For any texture band, the computed similarity value for each pixel should ideally be
;:: near 1.0 for the texture we are seeking and near 0.0 for the textures specified as negative
N training examples. The actual separation for any real data band will be less, and some
::-: texture bands may fail to discriminate the training textures at all, but a decision threshold
i at 0.5 should separate our positive and negative training textures if they are indeed dis-
] criminable. Decision thresholds above or below 0.5 could also be chosen; this is equivalent
to adjusting the a priori source-class probabilities, Pr(w) and Pr(¢), that are implicit in
- the similarity transform. (We can no longer second-guess the relative proportions of the

population probabilities, Pr(w;) and Pr(¢;), within the source class probabilities. Such
fine control is not needed, however, particularly since we rarely require multiple positive or
negative exemplars.)

“Unexpected” or unmodeled textures in the image should have similarity values in be-
tween the extremes for the training textures. The [eight-bit] histogram of a similarity band
typically has a very large peak at the low-similarity end (representing image gray levels that
were common in the negative-exemplar textures) and a spread of higher-similarity spikes
that look rather uniformly distributed. Smoothing the histogram (with a Gaussian kernel
of standard deviation 5 or less) typically reveals that this high-similarity energy consists
of a few Gaussian clusters representing image regions that are fairly similar to the positive
exemplar.

Segmenting this smoothed histogram is usually quite easy. The SLICE program cur-
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rently uses a version of the PHOENIX histogram-based segmentation algorithm (docu-
mented in Appendix A) to find suitable thresholds. We may want to select just the peak
of values most similar to the training texture, although thresholding anywhere above the
large peak of least-similar values will generally produce a good spatial segmentation of the
image. We may also select multiple thresholds that will isolate other peaks in the histogram
and thus extract image regions with other textures as well. It is this capability that makes
SLICE a segmentation algorithm rather than just a classification algorithm.

The above procedure works if it is possible to find even one peak in one histogram that
is reasonably well separated from other peaks. In practice, there can be as much as a 25%
overlap between two Gaussian peaks and the segmenter will still find reasonable subregions
in the image. There will be times, of course, when the histogram-segmentation algorithm
fails to find any segmentable peaks in the similarity-band histogram, particularly when
we are trving to segment a whole black-and-white image or a low-resolution texture data
band. The segmenter will find that a region is uniform and unsegmentable, but higher-level
knowledze may suggest that this is false. The current SLICE program is not able to proceed
automatically in such cases, but any of the following techniques could be invoked:

e Try again with relaxed parameters for the peak-finding heuristics. The SLICE pro-
gram currently uses the PHOENIX histogram-partitioning ireuristics with the “mod-
erate” parameter settings developed during the SRI evaluation of that package for
the DARPA/DMA Image Understanding Testbed. These smoothing parameters and
heuristic criteria could be successively weakened until peaks are found in the his-
togram.

e Compute additional data-band transformations such as pairwise ratios or combina-
tions of existing data bands. Any oblique cut through the multidimensional histogram
space is likely to resolve at least one histogram peak. Computation of such a data
band and histogram does not take long, particularly if only a small region is involved.

e Compute a multidimensional histogram from multiple data bands and apply cluster
analysis techniques to find discriminable subpopulations. Combining two bands in
this way produces a two-dimensional histogram that can be analyzed by means of
image partitioning techniques [Nagin 77, 78]. The SLICE system itself might be used
to find populated areas of the bivariate histogram.

o Threshold the image region at arbitrary levels, e.g., at histogram quartiles or deciles,
and nse spatial analysis (including noise suppression) to recover subregions that can
later be remerged or edited. This option is available in the SLICE program and works
surprisingly well.

o Partition the region at arbitrary spatial boundaries, segment the pieces, and then
remerge or edit subregions along the boundaries [Robertson 73, Horowitz 74, Price 7G].

o Switch to a different histogram-segmentation method, such as minimal-spanning-trce
analysis or relaxation-based peak sharpening [Bhanu 82].

e Switch to an entirely different segmentation approach, e.g., region growing {rom ho-
mogeneous seed areas within the region.
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Any of these methods, and no doubt others, will move the segmenter off “dead center” when
scgmenting a complex region is imperative. Once partitioning is started, subregions that
are themselves composite can usually be segmented with ease.

Once distinct histogram peaks have been found, the segmentation algorithm finds corre-
sponding regions in the image by simple threshold segmentation and connected-component
extraction. It then computes a quality score for the spatial segmentation based on the
percentage of small “noise regions” produced. This quality score can be used to select the
best of several competing similarity-band segmentations. Better quality scores could be
computed from region shapes and other high-level or goal-directed criteria.

The current SLICE program includes an optional screening of extracted regions based on
spatial adjacency. Frequently the user wishes to “grow” an identified image region (e.g., one
that he has traced with a pointing device) instead of finding all other similar pixel patches
in the image. After connected-component extraction, the SLICE program can suppress any
region that is not touching or nearly touching the initial prototype. Connected components
are again extracted and the analysis proceeds. The final step in the growing process is to
merge the regions found with the original training region.

7. Multiband Similarity: Putting It All Together

The previous section described a method for finding image regions corresponding to
peaks in a similarity-band histogram. The implemented segmentation algorithm is able to
select the best of several competing similarity bands by comparing the identified histogram
peaks and quality of spatial segmentation produced by each set of similarity-band thresh-
olds. This approach is typically useful in cueing applications when searching a scene for
textures that might differ considerably from stored prototypes. Using this technigue, a
target region distinguishable in even one data band can be segmented from its background
and passed up to a higher-level reasoning system for confirmation. The method also works
well with multiple data bands containing essentially the same information, since slight dil-
ferences in the information content might lead to better segmentation in one band than in
the others.

Another approach, also available in the current SLICE program, is to combine the
similarity bands computed from different luminance or texture bands into a single overall
similarity band. This is appropriate when we are very sure that our prototypes are repre-
seitative, as when we are trying to find a homogeneous texture region around a traced seed
region. Under these conditions we can assume that all instances of the target texture will
look very similar to the training texture in all transformed bands—if a subregion differs
significantly in even a single band it cannot be from the target population.

We might use factor analysis or discriminant analysis to devise an optimum weighting
function for combining the similarity bands. Such a function would no doubt be task-
dependent and image-dependent, making it very difficult to assemble sufficient training
data. A simpler solution is to construct the composite similarity band from the pixel-
by-pixel minima of the component similarities. This combining function is often used in
fuzzy-set theory. [t correctly reflects the assumption that target textures should behave
just like the prototype texture under any transformation, but has the negative effect that
we cannot recover from a prototype that is unrepresentative in even a single data band.

11




Figure 2: Aerial Image with Positive and
Negative Training Regions

In practice, the use of similarity minima works quite well for region growing. When com-
bined with spatial analysis and noise cleaning it results in either a reasonable segmentation
or a flailure to segment at all. Other combining functions might work better in particular
cases, however. Higher-level guidance based on preliminary segmentation and analysis of
each similarity band could be used to choose combining functions intermediate between
the first all-or-nothing approach and the second pixel-by-pixel minima approach [Salton 83,
Rauch 841].

One of the consequences of the SLICE similarity band computation is that the inclusion
of additional similarity bands in a composite should never degrade performance (other than
taking longer to compute). If we have truly representative prototypes, any histogram-based
transformation will either help discriminate the positive training classes from the negative
training class or it will fail to do so. If it discriminates them partially, any reasonable
combining function will either make use of the information or, at worst, ignore it; if it does
not discriminate them, the corresponding similarity band will be essentially constant and
will do no harm. (The SLICE program currently tests for such useless similarity transforms
and does not bother to compute the similarity band.) The SLICE similarity-transform
approach thus has the advantage that it may fail to provide information but will seldom
produce misinformation.

8. Examples: The Proof of the Pudding

We <hall now examine the performance of the SLICE algorithm on a particular acrial
image analysis task. The processing sequence will demonstrate both cne advantages and the
disadvantages of this approach. Simple ways of improving the demonstrated performance
will also be discussed.

Figure 2 is a black-and-white image of a residential area near Page Mill Road in Palo
Alto, California. The image has not been normalized or otherwise preprocessed. It shows
trees, roads, fields, buildings, swimming pools, and a few cars. Shadows are cast both by
the buildings and by the trees, although the resolution is such that tree shadows are very
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Figure 3: Texture Energy Bands

difficult to discern. A full parse of the scene would detect and identify all of these entities.
Our concern here will be the extraction of all the tree regions, perhaps as a preliminary
to extracting other objects in the scene. We shall first trace the process of “growing” trec
regions from user-selected examples and shall then examine the output of a more general
*finding” or cueing algorithm.

Extraction of the trees in this image by interactive threshold segmentation is not diffi-
cult. The trees (or perhaps bushes) are distinguishable by their gray-level signatures in the
original image. An image-understanding system would not know this a priori. however, but
would have to extract and identify at least some of the trees and then estimate whether it
could extract the rest. The system could search for good tree regions by experimentation
with different thresholds [Selfridge 82], but the methods presented in this paper are more
efficient.

Trees presumably have distinctive texture signatures in addition to their gray-level sig-
natures. Figure 3 shows four texture bands selected from the texture energy set. These
were computed with 5x 5 filters masks and 15 x 15 “absolute average” summations. (At this
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image resolution, the 3 x 3 filter set would probably have worked better.) Each texture band
highlights different characteristics of the original image. The four texture bands used here
are the same ones selected in the development of the texture energy measures [Laws 80).
although there is little reason to believe that this is the best subset or even an adequate
subset for image analysis. The selected filters respond primarily to horizontal edges, high-
frequency variation, medium-frequency diagonal structure, and narrow or high-frequency
vertical structure. The data bands have been normalized for image contrast, but pairs have
not been combined to form rotation-independent texture bands.

Goal-independent analysis of the original image, using the PHOENIX segmentation
algorithm (and skillful setting of its numerous parameters), leads to isolation of most trees
in the scene. These regions are not the first to be reported by the segmenter, however,
- nor are they the last. The user or high-level control program must somehow select the tree
. regions from among the hundreds of reported regions. This is made more difficult by the fact
that most of the scene is very poorly segmented by the PHOENIX algorithm, with region
boundaries crossing homogeneous fields and with parts of house roofs cut off and grouped
with surrounding fields. Adding computed texture bands to the original black-and-white
band degrades performance: areas around building edges are identified as homogencous
regions and several scattered patterns of trees interspersed with grass are also extracted as
regions. (The latter effect is useful, but not as useful here as finding the individual trees.)

Goal-driven segmentation with the SLICE algorithm begins with the selection of training
areas. A sophisticated system might have adequate tree templates stored in its knowledge
base. Here we depend on the user to select representative training regions. Large samples
work better than small ones, but we will demonstrate the technique with the two small
training areas in Figure 2. A negative training region containing a strong shadow and a
mixture of other scene textures is also shown; the remainder of the image outside the three
traced areas will be used as a second negative training region.

The two positive training regions were carefully selected. The upper-right region is a
nearly minimal sample such that the SLICE program’s “grow™ command will extract the
entire clump of trees extending from the upper-right corner diagonally downward toward
the bottom edge of the second training region. The second region is also a nearly minimal
sample such that the “grow” command will extract all tree clumps touching the region.
Rather than witness these feats, we will now examine performance when both regions are
sought simultaneously and the upper negative training example is also specified.

Figure 4(a) shows the histograms of the training regions together with the histogram
of the remainder of the image. We can see that both tree regions have similar histograms,
although they differ in detail. The negative training region has three peaks corresponding
to a shadow, the house roof plus driveway, and the lawn and car. The histogram for the
rest of the image contains some dark pixels from trees and shadows and many light pixels
from other scene components.
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Figure 4(b) shows the resultant gray-level similarity transform for this black-and-white
image band. Similarity is highest for those pixels corresponding to trees, despite the negative
effect of tree regions in the whole-image histogram. The similarity transform shows a very
slight dip for shadow pixels and a much stronger dip in the house roof interval. The least-
similar gray levels are those occurring in the image but not in either positive training region.
The similarity function increases again for very bright pixels: these are absent in all image
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regions and hence need not concern us.

Applying this transformation to the original image produces the similarity data band
in Figure 4(c). Trees, shadows, and a very small number of other scene objects have
been highlighted. We can easily extract trees from this transformed band, and such a
segmentation will be presented in Figure 8. For now, let us continue trying to “grow” our
training regions using multiband similarity.

The SLICE program is capable of using any number of texture bands as additional
inputs. For demonstration purposes, we shall limit it to just the band of Figure 3(b). This
band tends to show trees as dark regions, although the effect is not strong. Any of the other
texture hands might perform as well or better.

Figure 5{a) shows the training histograms for this band. Note how strongly the negative
training area histogram matches that of the positive training areas. Use of the negative
training example actually degrades segmenter performance in this case, albeit only slightly.
{In other situations the “caution” introduced by this overlap might prevent the segmenter
from making bad decisions.) We could reduce the degradation by giving the negative
example less weight than the histogram of the area to be segmented, but the knowledge-
based mechanisms needed to make such decisions have not been included in the SLICE
program.

Figure 5(b) shows the similarity transform computed from the training histogram. [t
shows a preference for dark pixels, but is not very specific. This leads to the texture-
similarity band of Figure 5(c), which we can see will not lead to a good segmentation of the
image. The segmentation program has no such perception, however, and must somehow
determine that it should reject most of the “information” in this computed band.

The method of combining similarity functions that we will use here is to take the pixel-
by-pixel minimum of all similarity bands. This combined transform function can be com-
puted from the individual similarity transformations rather than from the similarity data
bands. thus saving considerable computation. The result of applying this combined simi-
larity transformation to the original image may be seen in Figure 7(a). It is similar to the
similarity band for the black-and-white data band, although more intermediate gray levels
are prescnt.

Figure 6 shows both the smoothed and the unsmoothed histograms of the merged sim-
ilarity band. There are several clusters in this one-dimensional space, and any to the right
of the main histogram peak could represent the trees we are seeking. An intelligent sys-
tem would investigate several thresholds or would use several thresholds simultaneously.
The current SLICE algorithm simply chooses the threshold that best survives its screening
heuristics —in this case perhaps a rather poor choice. Figure 7(b) shows the spatial result
of applying this threshold. The trees are indeed found, but so are driveways, road patches,
and other dark image regions. There has also been a blurring effect because of the 15 x 15
window used to compute the texture energy band.

Our current task is to “grow” the original sample regions to their full image extent,
rather than find more distant matching regions. A simple spatial analysis can thus be
employed to eliminate all regions not touching the original training regions. (The current
criterion is that the rectangle enclosing a candidate region must come within one pixel of
touching a rectangle enclosing one of the positive training regions. This allows for small
breaks in our extraction of a scene object and permits a higher-level process to determine
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Figure 6: Merged Similarity-Band Histogram

(¢) Extracted Regions (d) Region Outlines

Figure 7: Merged-Similarity-Band Analysis
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(a} Gray-Level-Coded Region Map (b) Region Outlines

Figure 8: Regions Found by Similarity-Band Selection

whether nearby regions should be merged or discarded.) Candidate regions smaller than
some threshold, here set at five pixels, are also discarded as probable noise regions.

Figures 7(c) and 7(d) show the result of this spatial screening. The segmenter has done a
zood job of expanding the initial sample regions, although the lower-left region has absorbed
part of an adjacent house roof. The upper-right tree clump has been found, but includes
pixels from the surrounding field that would not have been included if the inherently blurred
texture band had not been used (or if the final similarity histogram had been thresholded at
a higher gray level). Two additional large regions, both containing trees, are found because
of the gray-level and spatial interactions of the two sample regions. They would not have
been retained if the two training regions had been grown independently.

Thix concludes the presentation of the goal-directed region-growing technique used in
the SLICE program. \We have seen how the algorithm is able to overcome difficulties such
as small positive training regions; negative training regions that are unrepresentative (i.e..
badly weighted) and include the very pixels we are trying to find; blurred, poorly chosen,
or uninformative texture data bands; ad hoc similarity combining functions; and poorly
chosen thresholds. As knowledge-based techniques are developed and refined, some of these
difficulties will be eliminated and performance enhanced commensurately.

A final example of the power of the SLICE goal-directed approach may be observed in
Figure 8, which shows the effect of the SLICE program’s “find” command when the same
training regions and texture band are employed. This algorithm differs from region growing
only in the similarity combining function and spatial screening. Instead of combining the
computed similarity bands, each is analyzed separately and the one with the least “noise
area” is selected. The texture data band is thus rejected and only the original black-and-
white image is employed. Shadows and a few other undesired dark areas are found. but
essentially every tree over five pixels in arca is identified. This leaves very little work for a
higher-level verification process to perform.
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9. Conclusions

The SLICE segmentation system is one of several existing systems for segmenting digital
images recursively. Its major contributions are computation of a nearly optimal texture-
similarity function and integration of this approach with a robust segmentation system to
permit both goal-directed and goal-independent textured-image partitioning. Some of the
advantages and disadvantages of the SLICE algorithm are listed below.

o The SLICE goal-directed segmentation algorithm uses multispectral or “multitextu-
ral” input to extract precisely those scene objects of most interest. If it fails, repeated
attempts with relaxed constraints may locate candidate regions. If it succeeds, it

: generally produces high-quality regions that require little postediting. Provision for

negative training examples permits easily confused material types to be separated

early in the analysis process.

TS T i,
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SLICE, like other region-based methods, always yields closed region boundaries. This
is not true of edge-based feature extraction methods, with the possible exception of
boundary following and zero-crossing detection. Closed boundaries, the essence of
segmentation, greatly simplify other image analysis tasks such as material identifica-
tion and object mensuration. The resulting regions provide meaningful entities for a
human or high-level control system to reason about and manipulate.

[ ]

o
A Bl

b
r.

SLICE is a hierarchical or recursive segmenter, which means that even a partial seg-
mentation may be useful. This can save a great deal of computation if efforts are
concentrated on image regions in which further segmentation is critical. If a full goal-
independent segmentation is desired, however, other methods of segmenting may be
more economical.

o SLICE is relatively insensitive to noise because noise tends to average out in the region
histograms used to select thresholds. This contrasts with edge-based methods, as the
local analysis they require can be highly perturbed by noise.

o SLICE currently has no notion of boundary straightness or smoothness. This may be
either good or bad, depending on the scene characteristics and the analysis task. It
easily extracts large homogeneous regions that may be adjacent to detailed, irregular
regions (e.g., a lake adjacent to a dock area or the sky over a complex skyline);
such tasks can be difficult for edge-based seginenters. Boundary aesthetics and other
semantic criteria can be incorporated as part of cither an editing process or knowledge-
based control structure.

¢ Region-based segmenters may fail to detect even long and highly visible boundaries
between two large, similar regions if the region textures cause their histograms to
overlap. The use of texture bands reduces this problem because the boundary re-
gion itself forms a distinctive texture. Hypothesis-driven edge-based methods may be
required to confirm such boundaries.

e SLICE tends to miss small regions within large ones because they contribute so little
to the composite histogram. It is thus poorly suited to goal-independent detection
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of vehicles and small buildings in aerial scenes, although the use of multiple texture
bands alleviates this deficiency. Goal-dependent selection of search areas and texture-
similarity transforms will help to locate small objects even against backgrounds of
similar gray level.

g ONORCER]
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¢ SLICE also tends to misplace the boundary between a large region and a small one,
thus obscuring roads, rivers, and other thin regions. Boundaries found by edge-based
methods are less affected by distant scene properties, but work poorly if not adapted
to the statistics of the regions being discriminated. An edge-based postediting of the
region boundaries found by SLICE may combine the best of both approaches.

LA
PP

e SLICE requires multispectral input or multiple texture transforms for effective opera-

[ tion. Edge-based and valley-seeking or spanning-tree techniques are better adapted to

o operation in a single data band, and thus require less computer memory and possibly

. less processing time. .. .

Selection of a segmentation algorithm should depend on the task to be performed. R

The SLICE segmentation system is a convenient testbed for integrating diverse feature- o
extraction techniques and experimenting with knowledge-based control structures. KRS i
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| Appendices T ]

A. The PHOENIX Segmentation Algorithm

The SLICE segmentation algorithm incorporates the PHOENIX color segmentation al-
gorithm developed at Carnegie-Mellon University [Shafer 82, Laws 82]. This is a sophisti-
cated method of hierarchical region extraction based on region statistics and user-specified
parameters. It does not use explicit knowledge about the types of data bands it is given
nor about the scene objects being sought.

Each object or object part in a scene is assumed to form a nearly uniform patch in the
image, with a noisy Gaussian peak in any single-band histogram. Decomposing a function
into Gaussian peaks is known as the mixture density problem [Wolfe 70] and is important in S
information theory, statistics, chemistry, and other fields. Very little of this theory has been ,{‘j N
applied to image processing {Chow 70, Rosenfeld 76, Postaire 81]. The PHOENIX/SLICE T
algorithm segments mixture densities by identifying the most obvious thresholds in any
of the data bands, then using spatial-analysis “look-ahead” before confirming a candidate
threshold. The algorithm does make slight errors in threshold placement, however, leading
to the breakup of some small regions and a shifting of the boundaries of others.

Ohlander and Price used a hierarchy of heuristic rules for selecting the most prominent
peak within a set of histograms [Ohlander 78, Price 79, Nevatia 82]. PHOENIX uses similar
heuristics, but concentrates on the valleys (i.e., local minima) in the histogram set. Usually a
single valley, resulting in one threshold and two intervals, is selected for each feature. Spatial
analysis is then employed to select the best threshold/data band combination. Using only
one threshold per pass reduces the chance of segmentation errors, although it does increase
the number of passes required.
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Histograms can be treated as one-dimensional images and can be segmented by almost
any image segmentation method. The PHOENIX histogram-analysis component uses an
interval-merging strategy. Each single-band histogram is first smoothed with a binomial
or Gaussian smoothing kernel having a standard deviation gsmooth— typically 3, and
ranging from 3 for coarse segmentation down to 2 for more detailed segmentation. (The
original PHOENIX algorithm used a simpler unweighted moving average.) The histogram
is then broken into intervals in such a manner that each begins just to the right of a valley
(i.e., at the next higher intensity), contains a peak, and ends with the next valley. A valley
is considered to be the right shoulder of its left interval and the left shoulder of its right
interval. The leftmost and rightmost intervals always have exterior shoulders of zero height.

A series of heuristics is then applied to screen out noise peaks. Each test is applied to
all the intervals in the histogram. When an interval is eliminated, it is merged with the
neighbor sharing the higher of its two shoulders. The screening test is then applied again
to the merged interval. (Previous tests are not reapplied.)

Peak-to-shoulder ratio is tested first. An interval is retained only if the ratio of peak
height to the higher of its two shoulders, expressed as a percentage, is at least as great as
the user-supplied maxmin parameter—typically 160%, and ranging from 300% for “strict”
screening down to 130% for “mild” screening.

Peak area is then compared with an absolute threshold, absarea, and with a relative
threshold, relarea, representing a percentage of the total histogram (or region) area. Only
peaks larger than these thresholds are retained. Absarea is typically 30 pixels, ranging
from 100 pixels down to 5 pixels; relarea is typically 2%, ranging from 10% down to 1%.

The intervals surviving to this point should be reasonable candidates, and it is fairly
sale to use global histogram descriptors in the test conditions. The second-highest peak
is now found, and those peaks whose height is less than a percentage, height, of it are
merged. The lowest interior valley is then found, and any interval whose right shoulder
is more than absmin times that valley height is merged with its right neighbor. (The
parameter appears to be misnamed, since the criterion is relative rather than absolute.)
Typical values of these parameters are 20% and 10 pixel counts, ranging from 50% to 10
and 2 counts to 30 counts.

A final screening is performed to reduce the interval set to intsmax intervals. This is
done by repeatedly merging regions with low peak-to-shoulder ratios until only intsmax—1
valleys remain. Intsmax is typically set to 2 to force the highest-quality segmentation
during each pass, although higher values could save considerable computation time.

A score is also computed for each interval set as a whole (in relation to the interval sets
fur other data bands). This score is the maximum over all intervals of the function

peak height — higher shoulder
peak height

This formula assigns the maximum score to an interval set containing a peak with shoulders
of zero height. Interval sets with scores less than absscore or less than relscore percent
of the best score for all data bands are rejected. Absscore is typically 700, ranging from
925 down to 600; relscore is typically 80%, ranging from 95% down to 65%.

If more than isetsmax data bands are still candidates for segmentation, the excess ones
with the lowest scores are now dropped. This parameter is typically 3 and ranges from 2
to 5. Remaining data bands and interval sets are passed to the spatial-analysis subsystem.

1000

21

L2

PRSP Y

. e
A ah ad a8y o

]
79




U e M e Mg S b I OA NI I S SIS SER LIPS SR SR S SN S AL L S St A g gy
et et et cate L T P S L TP R T R I e I LY

Histogram segmentation is a heuristic technique that sometimes misses good thresholds
and sometimes chooses bad ones. Some protection is provided by examining segmentations :
of several different data bands and choosing the best. Regions smaller than the noise .
threshold are merged back into their parent regions and bands producing region segmenta- LT
tions with more than retain percent of their area so merged are rejected. These paramcters .
are typically 10 pixels ranging from 50 pixels down to 5 pixels, and and 20% ranging from
1°¢ to 40°C. The remaining segmentation producing the lowest noise percentage is then se- R
lected and instantiated in the data base. All resulting subregions are scheduled for further AR
attempted segmentation provided that their areas are at least splitmin pixels—typically
40 pixels and ranging from 200 pixels down to 20 pixels.

No single threshold is going to result in perfect segmentation when the histogram peaks
overlap. We might instead use two thresholds—one low enough to catch all of the higher
h peak and another high enough to catch all of the lower peak—then ascertain from the image

(NGO

PR Y

which threshold is correct for extracting each subregion. In practice, most of the small nosse
patches that result from a slightly offset threshold are easy to identify and absorb into the
surrounding subregions. The noise-cleaning process leaves only the exact placements of
the subregion boundaries in doubt, and these can be better determined in a postediting of
adjacent region pairs than through clever partioning of a multiregional histogram.

B. Spectral Transforms for Color Segmentation

Color bands are needed when two regions to be distinguished have similar texture (in-
chuding intensity), but different hue or saturation. Transformations of these bands can
sometimes be used to separate pixel clusters that project to overlapping or confounded his-
togram peaks in the original spectral data bands. Similar band combinations may be useful
for segmenting texture bands or other nonspectral data bands.

Color transformations are not currently implemented as part of the SLICE program.
but transformed data bands computed off-line can be used to improve its operation. The
segmentation algorithm currently makes no distinction between color bands and other types
of data bands. although the associated display routines do make such a distinction.

Color bands for image processing research are typically generated by scanning a color
photograph through filters (e.g., Wratten filters 25, 47B, and 58) to get red, green, and blue
(RG B) data bands. Real-time systems often use an electronic color camera to generate
cquivalent ¥ /@3 bands that correspond roughly to perceptual brightness, cyan vs. orange,
and magenta vs. green. The following discussion assumes that the primary input is in RG;' B
coordinates, but converting to or from other color coordinates is fairly easy.

Each color system constitutes a three-dimensional chromatic space that can express
most of the colors perceived by humans. (The detailed spectrum that astronomers and other
physical scientists depend upon has been lost, just as it is in the human visual system.) "
A few purples and highly saturated colors are not precisely representable and the colors el
recorded with different films or cameras may differ, but the tricomponent representation is L e
adequate for most purposes. e .

3y'1Q is the National Television Systems Committee (NTSC) color coordinate system. The perceptual
brightness, or V', chromaticity band takes its name from the XY Z chromatic primary system of the Com-
mission Internationale de I'Eclairage. I and @ are the NTSC in-phase and quadrature signal components.
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Typical quantization is eight bits per color axis, or 16.8 million cells for an entire three-
dimensional color histogram. Cluster analysis in such a space is not attractive, although
methods of multidimensional pattern recognition are available. The SLICE package instead
uses an adaptation of a one-dimensional histogram partitioning method implemented in the
CMU PHOENIX program [Tomita 73, Tsuji 73, Ohlander 75, Shafer 82, Laws 82].

Any one-dimensional histogram is equivalent to a projection of the three-dimensional
data onto a line {or curve) through the chromatic space. If the scene contains many regions,
their histogram peaks are likely to overlap and obscure any useful details in the composite
histogram. The overlap is different for projections at different angles, and it is often possible
to isolate peaks from some of the regions by using many projections.

Ohlander used RGB, HSD*, and Y IQ projections, but many other color coordinate
transformations are possible. The HS D coordinates were introduced by Tenenbaum et al.
[Tenenbaum 74a, 74b] to mimic human color perception. They are

(R-G)+(R~B)
¢V(R-G)(R-G)+(R- B)(G - B)

min(R, G, B),
R+G+B

H = arccos

S = m-(1-3

D = (R+G+ B)
3 ?
where m is the maximum desired saturation value. Hue is normalized by subtracting it
from 27 if B > (7; some care must be taken in rounding the values near 27 if the number is
quantized. Note that these formulas contain singularities that are due to division by zero,
and thus exhibit unstable segmentation behavior near the D axis.
The Y IQ coordinates used in color television transmission are

¥ 0.509R + 1.000G + 0.194B
I 1.000R — 0.460G — 0.540B + M
Q@ = 0403R - 1.000G +0.5978 + M )

where A is the highest possible intensity value in the original RG B features, typically 255.
These formulas have been linearly scaled to maintain quantization accuracy (via the unit
coefficient). M is added simply for convenience in digital representation. (The Q feature
can be negated before adding M to better match the green gun on a color monitor.)

Kender analyzed the color transformations used by Tenenbaum and Ohlander and
showed that inherent singularities and quantization effects were capable of introducing false
histogram peaks and valleys {Kender 76, 77]. This effect is particularly noticeable in the
hue feature, but also affects saturation and other normalized chromaticity coordinates. Iie
recommended that saturation be ignored in regions of low luminance, with hue ignored in
low saturation as well. The ¥ /@ transform was found to entail fewer problems, although
its usefulness in segmentation was not evaluated. Kender also proposed an improved com-
putational algorithm for hue.

*The HSD, or hue-saturation-intensity, color coordinate system is also known as the HST or IHS system.
The symbol D is used here for intensity to avoid confusion with the }'/Q system. It comes from density,
a measure of the amount of silver deposited at a given point in a photographic negative.
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Ohta et al. have further investigated color transforms for recursive segmentation ERI,
[Ohta 80a, 80b). They computed color histograms by using the Karhunen-Loeve color R
transform—an expensive method because the transform is different for each region. Ohta “——i—-—l
found that the principal transform axes typically clustered around R

L = R+G+B
I R-B
Is = 2R-(G+ B)

and recommended that these features be employed. (The second and third features may be s o
negative, so that either an offset becomes necessary or the segmentation code must be able S ]
to handle negative pixel values.) ST

Ohta’s transform is similar to the Y IQ system, as well as to the “opponent” color o :
process recommended by several authors [Sloan 75, Nagin 78]. The transform is linear St
and hence avoids the instabilities that Kender found in saturation, hue, and normalized
chromaticity coordinates. Nagin expressed some theoretical reservations about his own N
opponent fcatures, but concluded that they “consistently provided more discrimination Lo
than the original RG B data.” T

HS D and Y IQ color transformations were used in SRI’s evaluation of the PHOENIX
color segmentation program [Laws 82]. Hue was mapped to the range 0 to 179, with red at
0 (and 180), green at 60, and blue at 120. Achromatic pixels (i.e., black, gray, and white)
were mapped to 255; this seldom makes a difference since pixels with exactly equal RGB
components are exceedingly rare. A less exact test for achromaticity might work better (or
at least differently) for images with slight imbalances in their color strengths.

The I and Q color bands computed by Kender’s formulas should theoretically be divided
by two (and then shifted to a nonnegative range) if they are to be stored in 8-bit image
planes. (The SLICE program can handle image data with other pixel sizes, but eight
bits is convenient and seems to offer a reasonable dynamic range.) Most of this range is
wasted, however, unless [ is stretched by a factor of two and Q by a factor of four prior to
quantization, with clipping of extreme values. This greatly increases the usefulness of these
bands for segmenting natural imagery, although it could fail for scenes that contain large
regions of saturated colors. R

Hue was generally not only the most useful color band in tie SRI evaluation, but also PRI
the easiest to comprehend. The D and Y bands are essentially redundant;: they do not S
always segment identically, but the extra information is not worth the cffort of compnting R
both. Segmentation on the RG'B bands was almost as good but more difficuit to explain:
the RG B bands were each nearly equivalent in segmenting power, and successive region
extractions seemed to jump randomly from one to another. (Differences in color are usnally
correlated with disparities in brightness, so an object that appears red might actually be
segmented on a different color band by the PHOENIX/SLICE algorithm.) The S band was
somewhat less useful, although decisions based on it were easy to explain. / and Q were
the least useful data bands, although they might have been essential if some of the other
seven data bands had not been available.

Overall, the HST color system seems easiest to use, although the other color systems
work well if explanations of each segmentation step are not needed. The RG B bands are so
similar to one another that the addition of a hue band can improve segmentation greatly.
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Pixels containing blue mixed with red (i.e., purples and violets) are rare even in hazy
mountain scenes, so there is seldom a problem with peaks in the hue histogram being split
between the bottom and top portions of the scale. Saturation is more likely to be the cause
of such instabilities; dark or shadowed image regions sometimes transform to very high
saturation values, indicating that segmentation on luminance should be done first or that
the instability of saturation should be considered during noise cleaning and other analyses.

Transformations of texture and other nonspectral data bands have not been evaluated,
but simple sums and differences of the bands are the most separated in a multidimensional
histogram space and are thus most likely to improve segmenter performance. Texture bands
can also be combined with spectral bands in this way.
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Abstract

We examine the task of matching images of a scene when they are taken from
very different vantage points, when there is considerable scale change, and when RN
the image orientations are unknown. We use the linear structures in the scene R

as the basis of our correspondence procedure. This paper considers the problem

of describing the linear structures in a manner that is invariant relative to the

variations that can occur among images, and discusses a method of finding the best 5
description of the linear structures.
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1. Introduction

When the human visual system is presented with two views of a single scene, it
determines the relative viewing positions of the two images and brings the latter into
correspondence. That is, the relationship of each image to the scene is understood
so that both images can be used as information sources for further processing. This
human ability functions well over a wide range of viewing positions and conditions.
It is this ability to place two very different views of a single scene into correspondence

that we address in this paper.

We should draw a distinction between two forms of the image correspondence
task. Traditionally, image registration has been a task undertaken by photogram-
metrists. One application involves registering an image to a map so that new in-
formation, present in the image, may be transferred to the map. Another is the
registration of the two images of a stereo pair so that disparity information can be
extracted. In each of these tasks the two images, (or, in the first instance, the image
and the map), are similar in terms of both their viewing position and their scale.
The techniques used for registering the two images are point-based. A feature point
in one image is matched to the same feature point in the other image. In automated
systems this is achieved by selecting a small window about the feature in one image
and then correlating this window with one in the second image. If there is little
distortion or occlusion, this technique performs well; it has become the basis of

current automated image-registration systems.

The research reported herein was supported by the Defense Advanced Research Projects Agency
under Contract MDA9G3-83-C-0027 and by the National Aeronautics and Space Administration
under Contract NASA 9-16664. These contracts are monitored by the U.S. Army Engineer
Topographic Laboratory and by the Texas A&M Research Foundation for the Lyndon B. Johnson
Space Center.
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The other form of the image correspondence task seeks to find the relationship
among views that differ widely in vantage point, scale, etc. We will refer to this as
the correspondence task, and use registration as the name for the form of the task
outlined above. In correspondence tasks there is significant distortion between the
images, the scale may differ and may not even be constant across a single image,
as is the case in oblique aerial imagery, occlusion is common, and the response
of the various sensors to a single feature differs greatly. Feature point matching,
as used in image registration, is prone to error. However, feature point matching
is not the only means of placing images into correspondence. It appears that the
human visual system makes use of nonpoint features, such as linear structures and
extended landmarks. The aspects of our investigation reported here utilize the

linear structures of the images as the prime elements for achieving correspondence.

In classifying the methods that could be employed to find linear structures in
images, we draw a distinction between techniques that use semantic information
and those that do not. If, for example, we apply a road operator to locate some
of the linear structures in an image, that operator has had built into it semantic
knowledge about the appearance of rosds. We could proceed in this manner and
build comparable operators for all the scene objects that manifest themselves as
linear structures in images. Alternatively, we could seek to find the linear structures
in an image without “identifying” their nature. In this case, we identify the image
behaviour interpreted by us as a linear structure without knowledge of the world
objects that gave rise to that structure. We choose this latter course because we
wish to establish the correspondence among images without first having to identify

the scene objects.
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The correspondence task is carried out in three stages: we must find the linear
structures, we must build their descriptions and, finally, we must match these
descriptions. The details of the first stage is reported in Fischler and Wolf [1].
In this paper we explain how those procedures are employed in the correspondence
task. We present a detailed account of our implementation of the second stage -
namely, building structure descriptions - along with an outline showing how these

descriptions are to be used in the final matching stage.

2. Finding the Linear Structures

Descriptions of the semantically free procedures we use to find linear structures
in images can be found in Fischler and Wolf[1]. In essence, these procedures first
find those pixels whose intensity levels are local maximums and minimums, then
cluster such pixels and identify the minimal spanning tree for each cluster. The
long paths in each of the spanning trees are found, whereupon these form the basis
for the linear structure reported by the procedures. The results of applying these
procedures are shown in Figures 1-4. Figure 1 is a natural-color oblique view of
the Eel river in northern California; Figure 2 is a vertical infrared view of the
same scene. Each was scanned through red, green, and blue filters; the results of
the procedures for finding linear structures in each of these separation images are
shown in Figures 3(a),3(c),3(e) and 4(a),4(c),4(e). In addition, the red, green, and
blue separation images were combined into images of hue, saturation, and intensity;
these were also processed to find the linear structures contained in them. The results

are shown in Figures 3(b),3(d),3(f) and 4(b),4(d),4(f).
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Figure 1. Oblique Natural-Color Image of the Eel River

Figure 2. Vertical Infrared Image of the Eel River

These separation images differ appreciably in their linear structure. Certainly
no one separation image can be selected as providing a complete delineation of

the river. The philosophy we adopt is to view the original image from as many
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Figure 4. Linear Structure in the Vertical Image

perspectives as possible, obtaining the linear structures as seen from each of these.

That is, we look for structures in hue, in the green spectral band, and so on. Of

course, the hue image is derived from the red, green, and blue images, and contains

only redundant information, but this presentation of the information may show

A
-

structure that was masked in other presentations. In this sense, the additional
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Figure 5. Linear Structure in the Composite Oblique Image

Figure 8. Linear Structure in the Composite Vertical Image
perspectives provide new information on which the linear-structure finders can
act. The results of combining the linear structures extracted in all the various
perspectives are shown in Figures 3(h) and 4(h). Clearly, some of this structure
comes from shading effects rather than from physical structure in the scene. We

need to separate the real physical structure from all else.
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Figure 7. Structure Descriptions

Figures 3(h) and 4(h) were obtained by adding the binary images produced by

the lincar-structure finders. Consequently, in the combined image the values are

e
B
R

greater than one at those pixel positions where linear structure was seen in more
h than one separation image. We treat this combined produce as a new “grey-level”
image and, once again, apply the linear-structure finders. The results obtained from

applving these procedures to Figures 3(h) and 4(h) are depicted in Figures 5(b) and

6(b). Figures 5(a) and 6(a) show an intermediate result before we cull short struc-
tures. For each of the structures in Figures 5(b) and 6(b), we calculate the average
“intensity”, that is the average number of original separation images exhibiting that
linear structure. Figures 5(c),5(d),5(e),5(f),5(g),5(h) and 6(c),6(d),6(e),6(f),6(g),6(h)
reveal which segments would remain if we thresholded the “intensity” values at 1,

1.5, 2, 2.5, 3, and 3.5, respectively.

We build a description of the linear structures from one of these images. The

image we use will depend on the final matching procedure. If we wish to attempt

7
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to first match the “strongest” structures we use the image resulting from a high
threshold. On the other hand, if we wish to match the complete structure, the
unthresholded image would appear to be more appropriste. In the next section,
where we discuss the nature of the structure description, we use as examples
the foregoing two extremes. In the case of the oblique image, we have used the
“intensity” image at a threshold of 3.5 (Figure 7a), while for the other case, the

vertical infrared image, we employ the unthresholded image (Figure 7b).

3. Describing the Linear Structures

The means used to describe a linear structure is not independent of the use to
which this description will be put. A description that makes it possible to reproduce
the structure is different from one that is sufficient to recognize it. As matching is
our goal, we want a description that is general enough to be unaffected by noise in
the data, but specific enough to distinguish among structures that the human visual
system would classify as different. To the extent feasible, the description must be
invariant with respect to the variations that can occur in the data. Specifically, we

want the description to be independent of orientation, scale, and vantage point.

Our matching process will compare graphs of symbolic descriptions. We will use
as little metric information as possible. Consequently, the descriptions we employ
are symbolic ones, the primitive entities in each of which have qualities that are
themselves symbolic. For example, a primitive may be a straight-line segment whose

properties, such as an intersection angle (with some other primitive), bave values

acule, near-colinear, etc. rather than a value in degrees.
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The primitives we have chosen to use are straight-line segments, arcs of circles,
and model-less, that is, data we prefer to describe as indescribable, data for which
the data set itself is the most apt description. The choice of these few primitives
stems from the observation that human description of linear structures seems to be
based on curves and straight lines — moreover on whether adjoining curves curve
the same or opposite ways and whether adjoining pieces of the structure intersect
in particular ways. It is also a fact that humans find certain parts of the structure

too difficult to describe, and assign them some generic term like “wiggles”.

Selection of the description primitives is only half the task of description
building. We need to be able to divide the linear structure into parts and assign
a primitive to each. Usually the task of dividing the linear structure into parts
and describing each of these parts has been handled as two relatively independent
processes in which partitioning has preceded parts description. The difficulty with
this approach is that some characterization of the breakpoints between parts has to
be found. Generally, this characterization is based only on local properties of the
linear structure, even though neighborhood information or local inhibition may be
employed so as to benefit from more broadly based information. In this respect, the
task of describing a structure in terms of its primitive parts appears to have been
replaced by the more difficult undertaking of describing breakpoints. Our concern
is to find the “best” description without first having to find the “best™ subdivision.
Furthermore, we would like “best” to be defined in terms of a global criterion rather

than local properties of the structure.

The advantage of defining best in terms of a local criterion is that many can-

didates for the definition of “best” spring to mind. The disadvantage of defining

9




“best” in a global sense is the lack not only of likely definitions, but also of

e S

computationally effective algorithms for finding this optimal solution. However, .

a description that views the data from a “gestalt” perspective seems more likely to

be independent of image orientation, scale, and vantage point than one that applies

local data measures to define the optimal description. We define best description, as ﬁ ®
the one that minimizes the number of symbols needed to encode the linear structure

in terms of our description primitives.

-
) e

4. Minimal Encoding

The need to match data to description primitives is a central aspect of decision

theory and pervades artificial intelligence research. It is a human’s ability to

abstract data in terms of descriptive models that distinguishes human information

processing from its electronic namesake. Effective data abstraction is a balance

between two competing requirements. On the one hand a descriptive model must

fit the data adequately, while, on the other, the descriptive model must not be

needlessly complex. The criterion we use to select among competing descriptions is

based on the work of Georgeff and Wallace (2], in which the description considered

“best” is the one that can be encoded in the fewest symbols.

Suppose we wish to send data to some receiver so that he can recreate the

data to some preselected level of resolution. The sender and receiver have agreed

on a language for this communication that consists of a set of primitive elements.

What is the most efficient encoding of the data; which message has the minimal

encoding length? Consider the example of sending a message that describes a linear

10
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structure. The latter can be thought of as a list of z and y coordinates. Let
us further suppose that the language of communication contains three primitives:
straight-line-segments, arcs-of-circles, and model-less-segments. Is it more efficient

to send the data as a single model-less-segment primitive, that is, as a list of (z,y)

coordinates, or might it be more efficient to describe the data by one or more of the
other primitives, specifying sufficient information to describe how the actual data
differ from the primitives?

The message can be viewed as a list

..~..'w,.-, Py———

((MI’DI ),(Mz,Dz), ) ’

where M is the specification of the primitive, D the specification of the data in

NN 2 Aa

terms of the selected primitive M. Let us consider an example. Suppose we have
a data set that approximates a straight-line segment. We could communicate this

by specifying a straight-line-segment primitive M, where M consists of a code for

o Y

s the straight-line-segment primitive and parameters that specify the actual straight
n line segment. These parameters might be the endpoints of the line. We also need
’ to specify the actual data in terms of this primitive M. The data specification D

L.‘,'. might, for each data point, specify its coordinates as a distance along the line (from

its centre) and the perpendicular distance from the point to the line.

As the expected distances from the points to the line are small, we shall choose
an encoding of these distances so that the more probable of these, the smaller
distances, are encoded in fewer symbols (or bits) than those that are less likely. In
the actual examples we shall describe later, we assumed a Gaussian distribution for

these perpendicular distances and we encoded optimally for that distribution. The
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optimal encoding length is just the negative logarithm of the probability, i.e., the
function denoted as “information” in information theory.

If we have a small number of dats points fewer symbols may be needed to
communicate the data as a list of points; if, however, there is a large number of
data points that exhibit behaviour consistent with a primitive, it will probably be
cheaper to encode this data set as the primitive and then specify the data in terms
of that primitive. Of course we are not just comparing the encoding of all the data
with either one primitive or another. It might be more efficient to encode the data
as a few primitives, with each primitive “explaining” a different part of the data.
The encoding we select is the one that is globally best in explaining all the data.

A way of viewing the message form outlined above,

((A{lsbl)v(sz Dz), "') ]

is to look upon MAf as the overhead of introducing another primitive while D
represents the quality of the fit between the data and the primitive. Of course, since
different primitives have different M's, M also weights each primitive's efficiency
for encoding data. In comparing message length we are balancing the complexity
introduced by adding an extra primitive to the description of the data against the
quality of fit between the assembled primitives and the data values.

Although the above discussion focused on encoding messages for communica-
tion, we use minimal encoding length as the criterion for inding the best description
of a linear structure - without any interest on our part in actually transmitting the
data. This of course means that we only have to decide how many symbols would

be used if we were to encode the linear structure in a particular manner rather

12
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than actually doing the encoding. We can use the results of information theory to
determine the optimal encoding length without even having to understand what
the optimal encoding scheme is. That is, information theory gives us an operator,
or a measure, that we can apply to a description to determine how many symbols
we would need if we were to encode it optimally, without any consideration of the

actual encoding scheme and without the need to do the encoding.

Let us consider our application, encoding linear structures in terms of three
primitives: straight-line-segments, arcs-of-circles, amd model-less-segments. We will
assume that the data are specified on a N'xAf grid, and that the noise in the data will
induce a Gaussian distribution of the data points around the generating primitive.
Given that all grid points are equally likely, the cost in bits of encoding a grid point
is logN + logM, (log is to the base 2). Now consider the three aiternative ways of
encoding r data points (using one primitive only).

Model-less-segment:

We need a code to specify that the primitive being used is the model-less-
segment. As there are only three primitives, and we assume that they are all equally
likely, it costs log3 bits to specify the code. Specification of the data in terms of
this primitive will require in turn that we specify r grid coordinates, that is, a cost
of r(log.N + logM) bits.

Straight-line-segment:

We can 'specify the straight-line-segment primitive by specifying the endpoints
of the line segment. This costs 2(logN + logM) bits. In addition, the cost of
specifying the code for this primitive is log3. To specify the data in terms of

this primitive we will, for each data point, specify a distance along the line and

13
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the perpendicular distance from the point to the line. If the line segment is of
length ! (in grid units) then, to specify r distances, if we assume that all distances
are equally likely, will cost rlogl bits. If it is also assumed that the data points
have a Gaussian distribution about the primitive model, the cost of specifying r
perpendicular distances is

z: —Iog(

rpte

‘/2_”&5) '

where d is the perpendicular distance from the point to the line, and o the standard
deviation associated with the distribution. When the above expression is expanded,
the sum over the d’s is just the sum of the residuals squared that is calculated when
the line is fitted to the data by least-squares methods.

Arcs-of-circles:

We specify the arcs-of-circles primitive by specifying the endpoints‘ of the arc
and one other point on the arc. This costs 3(logN + logMf) bits, while the cost of
specifying the code for this primitive is log3 bits. To specify the data we use the
same scheme as we did for the straight-line-segment primitive.

Using these costing functions and a search algorithm that examines the various
ways for partitioning a linear structure into primitives, we find the best description

of that structure.

5. Results

The results of using the foregoing procedure on some of the linear ségments
found in Figures 1 and 2, (and shown in Figures 7(a) and 7(b)), are depicted in the

remaining panes of Figure 7. From Figures 7(a) and 7(b) we have selected some

14

IR E T AT T T




linear structures. The selected structures, which form the main course of the Eel
river, are shown in Figures 7(c) and 7(d). Our interest is in determining whether the
description built from one image is the same as that from the other. Of course, in
the final version of the structure builder we would need to handle all the segments
simultaneously, but this will necessitate considerable improvement in the search

algorithm to keep computational costs down to a reasonable level.

Figures 7(e) and 7(f) show the primitives returned. The arc of circles are shown
as full circles to improve readability. In Figures 7(g) and 7(h) the primitives have
been overlaid on the data to show the quality of fit. In assessing these results,
one should keep the purpose of this description in mind. We want to extract a
description of the linear structure in terms of lines and curves, in terms of the
manner in which parts intersect (acute angles, near-colinearity, etc.), in terms of
relative curvature (tight curves, gentle curves, and the like), and in terms of the
sequencing of parts in the structure. Given that the two images are viewed from very
different vantage points, that the scale is quite different (not even constant in one
image), that one image was taken in the infrared band and one in the visible band,
that the images were taken one-and-a-half years apart during different seasons,
and that no semantic information was used in the processing, the closeness of the
resulting descriptions is noteworthy. This points to the usefulness of processing
the data in the above manner; namely, the method of finding the linear structures;
the primitives used to encode the structure; and the encoding-length measure as a

criterion for best description.

Figure 7 shows the results obtained with real data. Similar results have been
obtained in experiments that employ other real data sets. Justification of the
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Figure 8. Encoding of Synthetic Data

method, however, requires further extensive experimentation. To better understand
the behavior of the description builder we include an example using synthetic data.
The data points are shown in Figures 8(a) and 8(b). In Figure 8(b) one extra data
point has been added to those shown in Figure 8(a). The resulting descriptions are
shown in Figures &(c) and 8(d) and overlaid on the data in Figures 8(e) and 8(f).
The addition of one critical point alters the description, an effect not unknown in
the human visual system. The resulting descriptions seem to match those perceived
by humans when they are presented with Figures 8(a) and 8(b). While we could not
claim that minimal encoding is the criterion used by the human visual system for
description building, we note that this criterion conforms to the type of behavior
we would want to achieve if we were modeling the visual system. Of course, if the

resultant description is sensitive to every addition or deletion of a data point it is of
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little use. In general, the minimal-encoding-length description appears to be stable

with respect to data changes, except when “critical” points are added or deleted.

6. Matching the Descriptions

If the description we obtain from the description builder characterizes the
data and is invariant with respect to orientation, scale, and vantage point, the
burden of matching descriptions is lightened considerably. It is our intent to match
descriptions at the symbolic level, to represent the descriptions found by minimal
encoding as graphs of symbolic entities, and to match those graphs on the basis
of their structure. Of course, it is unlikely that the graphs derived from different
images will match perfectly. Nevertheless, from a prospective match we can find
correspondences in the original images, and calculate the camera traﬁsformation

between the images.

This procedure allows data in one image to be transformed into the other. It
means that we can transform a linear structure found in one image into the other
image. For those parts of the graph where there is a mismatch we can ask the
question: how would the linear structure that is associated with the mismatch be
encoded if it were first transformed into the other image and then encoded? In this
manner we can attempt to explain the graph mismatches. If we cannot explain the
mismatches we should consider another match of the graphs. Through this process
of hypothesis and verification, we seek to avoid acceptance of a transformation that

does not explain “all” the data.
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7. Conclusion
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Having found the linear structures in ap image, we are faced with two major

< tasks before we can use these structures to find the correspondence between different

T T
el

images of a scene. We need to be able to describe these structures in a way that is

P independent of the variations that can occur between the images, and we need to

T

be able to match these descriptions to find the relationship between the images.

In considering structure description we show that the usual technique of divid-
ing the structure into parts and then describing the latter can be replaced by a

procedure that finds the “best” description of the data on the basis of a global

view of that data. This technique simultaneously divides the structure into parts
and describes them. “Best” is defined as the cheapest encoding of the data when
we consider the trade-off between the quality of explanation of the data and the

complexity of that explanation.

This approach produces a description of linear structures that appears rela-
tively insensitive to the vantage point, scale, and orientation of the original images.
% It may prove to be a description that enables easy matching, and hence an effective

approach to solving the problem of image-to-image correspondence.
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